Keywords: circular units; abelian fields; four ramified primes; Ennola relations
@article{10_5817_AM2017_4_221,
author = {Sedl\'a\v{c}ek, Vladim{\'\i}r},
title = {Circular units of real abelian fields with four ramified primes},
journal = {Archivum mathematicum},
pages = {221--252},
year = {2017},
volume = {53},
number = {4},
doi = {10.5817/AM2017-4-221},
mrnumber = {3733068},
zbl = {06819527},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-221/}
}
TY - JOUR AU - Sedláček, Vladimír TI - Circular units of real abelian fields with four ramified primes JO - Archivum mathematicum PY - 2017 SP - 221 EP - 252 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-221/ DO - 10.5817/AM2017-4-221 LA - en ID - 10_5817_AM2017_4_221 ER -
Sedláček, Vladimír. Circular units of real abelian fields with four ramified primes. Archivum mathematicum, Tome 53 (2017) no. 4, pp. 221-252. doi: 10.5817/AM2017-4-221
[1] Dohmae, K.: A note on Sinnott’s index formula. Acta Arith. 82 (1997), 57–67. | DOI | MR | Zbl
[2] Kučera, R., Salami, A.: Circular units of an abelian field ramified at three primes. J. Number Theory 163 (2016), 296–315. DOI: | DOI | MR
[3] Lettl, G.: A note on Thaine’s circular units. J. Number Theory 35 (1990), 224– 226. DOI: | DOI | MR | Zbl
[4] Rubin, K.: Global units and ideal class groups. Invent. Math. 89 (1987), 511–526. | DOI | Zbl
[5] Salami, A.: Bases of the group of cyclotomic units of some real abelian extension. Ph.D. thesis, Université Laval Québec, 2014.
[6] Sedláček, V.: Circular units of abelian fields. Master's thesis, Masaryk University, Faculty of Science, Brno, 2017, [online], [cit. 2017-07-17].
[7] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field. Invent. Math. 62 (1980/81), 181–234. | DOI | MR | Zbl
[8] Thaine, F.: On the ideal class groups of real abelian number fields. Ann. of Math. (2) 128 (1988), 1–18. | MR | Zbl
Cité par Sources :