Nonrectifiable oscillatory solutions of second order linear differential equations
Archivum mathematicum, Tome 53 (2017) no. 4, pp. 193-201
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The second order linear differential equation \begin{equation*} (p(x)y^{\prime })^{\prime }+q(x)y=0\,, \quad x \in (0,x_0] \end{equation*} is considered, where $p$, $q \in C^1(0,x_0]$, $p(x)>0$, $q(x)>0$ for $x \in (0,x_0]$. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near $x=0$ without the Hartman–Wintner condition.
The second order linear differential equation \begin{equation*} (p(x)y^{\prime })^{\prime }+q(x)y=0\,, \quad x \in (0,x_0] \end{equation*} is considered, where $p$, $q \in C^1(0,x_0]$, $p(x)>0$, $q(x)>0$ for $x \in (0,x_0]$. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near $x=0$ without the Hartman–Wintner condition.
DOI : 10.5817/AM2017-4-193
Classification : 34C10
Keywords: oscillatory; nonrectifiable; second order linear differential equation
@article{10_5817_AM2017_4_193,
     author = {Kanemitsu, Takanao and Tanaka, Satoshi},
     title = {Nonrectifiable oscillatory solutions of second order linear differential equations},
     journal = {Archivum mathematicum},
     pages = {193--201},
     year = {2017},
     volume = {53},
     number = {4},
     doi = {10.5817/AM2017-4-193},
     mrnumber = {3733066},
     zbl = {06819525},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/}
}
TY  - JOUR
AU  - Kanemitsu, Takanao
AU  - Tanaka, Satoshi
TI  - Nonrectifiable oscillatory solutions of second order linear differential equations
JO  - Archivum mathematicum
PY  - 2017
SP  - 193
EP  - 201
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/
DO  - 10.5817/AM2017-4-193
LA  - en
ID  - 10_5817_AM2017_4_193
ER  - 
%0 Journal Article
%A Kanemitsu, Takanao
%A Tanaka, Satoshi
%T Nonrectifiable oscillatory solutions of second order linear differential equations
%J Archivum mathematicum
%D 2017
%P 193-201
%V 53
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/
%R 10.5817/AM2017-4-193
%G en
%F 10_5817_AM2017_4_193
Kanemitsu, Takanao; Tanaka, Satoshi. Nonrectifiable oscillatory solutions of second order linear differential equations. Archivum mathematicum, Tome 53 (2017) no. 4, pp. 193-201. doi: 10.5817/AM2017-4-193

[1] Coppel, W.A.: Disconjugacy. Lecture Notes in Math., vol. 220, Springer–Verlag, Berlin–New York, 1971. | DOI | MR | Zbl

[2] Došlý, O., Řehák, P.: Half-linear differential equations. North-Holland Math. Stud., vol. 202, Elsevier Science B.V., Amsterdam, 2005. | MR | Zbl

[3] Elias, U.: Oscillation theory of two-term differential equations. Math. Appl., vol. 396, Kluwer Acad. Publ., Dordrecht, 1997. | MR | Zbl

[4] Hartman, P.: Ordinary differential equations. Classics Appl. Math, vol. 38, SIAM, Philadelphia, PA, 2002. | MR | Zbl

[5] Kiguradze, I.T., Chanturia, T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Math. Appl., vol. 89, Kluwer Acad. Publ., Dordrecht, 1993, Translated from the 1985 Russian original. | MR | Zbl

[6] Kusano, T., Yoshida, N.: Existence and qualitative behavior of oscillatory solutions of second order linear ordinary differential equations. Acta Math. Univ. Comenian. (N.S.) 86 (2017), 23–50. | MR | Zbl

[7] Kwong, M.K., Pašić, M., Wong, J.S.W.: Rectifiable oscillations in second-order linear differential equations. J. Differential Equations 245 (2008), 2333–2351. | DOI | MR | Zbl

[8] Pašić, M.: Minkowski-Bouligand dimension of solutions of the one-dimensional $p$-Laplacian. J. Differential Equations 190 (2003), 268–305. | DOI | MR | Zbl

[9] Pašić, M.: Rectifiability of solutions of the one-dimensional $p$-Laplacian. Electron. J. Differential Equations 46 (2005), 8pp. | MR | Zbl

[10] Pašić, M.: Rectifiable and unrectifiable oscillations for a class of second-order linear differential equations of Euler type. J. Math. Anal. Appl. 335 (2007), 724–738. | DOI | MR | Zbl

[11] Pašić, M.: Rectifiable and unrectifiable oscillations for a generalization of the Riemann-Weber version of Euler differential equation. Georgian Math. J. 15 (2008), 759–774. | MR | Zbl

[12] Pašić, M., Raguž, A.: Rectifiable oscillations and singular behaviour of solutions of second-order linear differential equations. Int. J. Math. Anal. 2 (2008), 477–490. | MR | Zbl

[13] Pašić, M., Tanaka, S.: Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order. J. Math. Anal. Appl. 381 (2011), 27–42. | DOI | MR | Zbl

[14] Swanson, C.A.: Comparison and oscillation theory of linear differential equations. Math. Sci. Engrg., vol. 48, Academic Press, New York-London, 1968. | MR | Zbl

[15] Wong, J.S.W.: On rectifiable oscillation of Euler type second order linear differential equations. Electron. J. Qual. Theory Differ. Equ. 20 (2007), 12pp. | MR | Zbl

Cité par Sources :