Nonrectifiable oscillatory solutions of second order linear differential equations
Archivum mathematicum, Tome 53 (2017) no. 4, pp. 193-201
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The second order linear differential equation \begin{equation*} (p(x)y^{\prime })^{\prime }+q(x)y=0\,, \quad x \in (0,x_0] \end{equation*} is considered, where $p$, $q \in C^1(0,x_0]$, $p(x)>0$, $q(x)>0$ for $x \in (0,x_0]$. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near $x=0$ without the Hartman–Wintner condition.
The second order linear differential equation \begin{equation*} (p(x)y^{\prime })^{\prime }+q(x)y=0\,, \quad x \in (0,x_0] \end{equation*} is considered, where $p$, $q \in C^1(0,x_0]$, $p(x)>0$, $q(x)>0$ for $x \in (0,x_0]$. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near $x=0$ without the Hartman–Wintner condition.
DOI :
10.5817/AM2017-4-193
Classification :
34C10
Keywords: oscillatory; nonrectifiable; second order linear differential equation
Keywords: oscillatory; nonrectifiable; second order linear differential equation
@article{10_5817_AM2017_4_193,
author = {Kanemitsu, Takanao and Tanaka, Satoshi},
title = {Nonrectifiable oscillatory solutions of second order linear differential equations},
journal = {Archivum mathematicum},
pages = {193--201},
year = {2017},
volume = {53},
number = {4},
doi = {10.5817/AM2017-4-193},
mrnumber = {3733066},
zbl = {06819525},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/}
}
TY - JOUR AU - Kanemitsu, Takanao AU - Tanaka, Satoshi TI - Nonrectifiable oscillatory solutions of second order linear differential equations JO - Archivum mathematicum PY - 2017 SP - 193 EP - 201 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/ DO - 10.5817/AM2017-4-193 LA - en ID - 10_5817_AM2017_4_193 ER -
%0 Journal Article %A Kanemitsu, Takanao %A Tanaka, Satoshi %T Nonrectifiable oscillatory solutions of second order linear differential equations %J Archivum mathematicum %D 2017 %P 193-201 %V 53 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/ %R 10.5817/AM2017-4-193 %G en %F 10_5817_AM2017_4_193
Kanemitsu, Takanao; Tanaka, Satoshi. Nonrectifiable oscillatory solutions of second order linear differential equations. Archivum mathematicum, Tome 53 (2017) no. 4, pp. 193-201. doi: 10.5817/AM2017-4-193
Cité par Sources :