Keywords: oscillatory; nonrectifiable; second order linear differential equation
@article{10_5817_AM2017_4_193,
author = {Kanemitsu, Takanao and Tanaka, Satoshi},
title = {Nonrectifiable oscillatory solutions of second order linear differential equations},
journal = {Archivum mathematicum},
pages = {193--201},
year = {2017},
volume = {53},
number = {4},
doi = {10.5817/AM2017-4-193},
mrnumber = {3733066},
zbl = {06819525},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/}
}
TY - JOUR AU - Kanemitsu, Takanao AU - Tanaka, Satoshi TI - Nonrectifiable oscillatory solutions of second order linear differential equations JO - Archivum mathematicum PY - 2017 SP - 193 EP - 201 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/ DO - 10.5817/AM2017-4-193 LA - en ID - 10_5817_AM2017_4_193 ER -
%0 Journal Article %A Kanemitsu, Takanao %A Tanaka, Satoshi %T Nonrectifiable oscillatory solutions of second order linear differential equations %J Archivum mathematicum %D 2017 %P 193-201 %V 53 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-4-193/ %R 10.5817/AM2017-4-193 %G en %F 10_5817_AM2017_4_193
Kanemitsu, Takanao; Tanaka, Satoshi. Nonrectifiable oscillatory solutions of second order linear differential equations. Archivum mathematicum, Tome 53 (2017) no. 4, pp. 193-201. doi: 10.5817/AM2017-4-193
[1] Coppel, W.A.: Disconjugacy. Lecture Notes in Math., vol. 220, Springer–Verlag, Berlin–New York, 1971. | DOI | MR | Zbl
[2] Došlý, O., Řehák, P.: Half-linear differential equations. North-Holland Math. Stud., vol. 202, Elsevier Science B.V., Amsterdam, 2005. | MR | Zbl
[3] Elias, U.: Oscillation theory of two-term differential equations. Math. Appl., vol. 396, Kluwer Acad. Publ., Dordrecht, 1997. | MR | Zbl
[4] Hartman, P.: Ordinary differential equations. Classics Appl. Math, vol. 38, SIAM, Philadelphia, PA, 2002. | MR | Zbl
[5] Kiguradze, I.T., Chanturia, T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Math. Appl., vol. 89, Kluwer Acad. Publ., Dordrecht, 1993, Translated from the 1985 Russian original. | MR | Zbl
[6] Kusano, T., Yoshida, N.: Existence and qualitative behavior of oscillatory solutions of second order linear ordinary differential equations. Acta Math. Univ. Comenian. (N.S.) 86 (2017), 23–50. | MR | Zbl
[7] Kwong, M.K., Pašić, M., Wong, J.S.W.: Rectifiable oscillations in second-order linear differential equations. J. Differential Equations 245 (2008), 2333–2351. | DOI | MR | Zbl
[8] Pašić, M.: Minkowski-Bouligand dimension of solutions of the one-dimensional $p$-Laplacian. J. Differential Equations 190 (2003), 268–305. | DOI | MR | Zbl
[9] Pašić, M.: Rectifiability of solutions of the one-dimensional $p$-Laplacian. Electron. J. Differential Equations 46 (2005), 8pp. | MR | Zbl
[10] Pašić, M.: Rectifiable and unrectifiable oscillations for a class of second-order linear differential equations of Euler type. J. Math. Anal. Appl. 335 (2007), 724–738. | DOI | MR | Zbl
[11] Pašić, M.: Rectifiable and unrectifiable oscillations for a generalization of the Riemann-Weber version of Euler differential equation. Georgian Math. J. 15 (2008), 759–774. | MR | Zbl
[12] Pašić, M., Raguž, A.: Rectifiable oscillations and singular behaviour of solutions of second-order linear differential equations. Int. J. Math. Anal. 2 (2008), 477–490. | MR | Zbl
[13] Pašić, M., Tanaka, S.: Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order. J. Math. Anal. Appl. 381 (2011), 27–42. | DOI | MR | Zbl
[14] Swanson, C.A.: Comparison and oscillation theory of linear differential equations. Math. Sci. Engrg., vol. 48, Academic Press, New York-London, 1968. | MR | Zbl
[15] Wong, J.S.W.: On rectifiable oscillation of Euler type second order linear differential equations. Electron. J. Qual. Theory Differ. Equ. 20 (2007), 12pp. | MR | Zbl
Cité par Sources :