Keywords: semiring; semiring polynomials; Gaussian semiring; cancellation ideals; invertible ideals
@article{10_5817_AM2017_3_179,
author = {Ghalandarzadeh, Shaban and Nasehpour, Peyman and Razavi, Rafieh},
title = {Invertible ideals and {Gaussian} semirings},
journal = {Archivum mathematicum},
pages = {179--192},
year = {2017},
volume = {53},
number = {3},
doi = {10.5817/AM2017-3-179},
mrnumber = {3708771},
zbl = {06819524},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-179/}
}
TY - JOUR AU - Ghalandarzadeh, Shaban AU - Nasehpour, Peyman AU - Razavi, Rafieh TI - Invertible ideals and Gaussian semirings JO - Archivum mathematicum PY - 2017 SP - 179 EP - 192 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-179/ DO - 10.5817/AM2017-3-179 LA - en ID - 10_5817_AM2017_3_179 ER -
Ghalandarzadeh, Shaban; Nasehpour, Peyman; Razavi, Rafieh. Invertible ideals and Gaussian semirings. Archivum mathematicum, Tome 53 (2017) no. 3, pp. 179-192. doi: 10.5817/AM2017-3-179
[1] Arnold, J.T., Gilmer, R.: On the content of polynomials. Proc. Amer. Math. Soc. 40 (1) (1970), 556–562. | DOI | MR
[2] Bazzoni, S., Glaz, S.: Gaussian properties of total rings of quotients. J. Algebra 310 (1) (2007), 180–193. | DOI | MR | Zbl
[3] Bourne, S.: The Jacobson radical of a semiring. Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 163–170. | DOI | MR | Zbl
[4] Dale, L., Pitts, J.D.: Euclidean and Gaussian semirings. Kyungpook Math. J. 18 (1978), 17–22. | MR | Zbl
[5] Dedekind, R.: Supplement XI to P.G. Lejeune Dirichlet: Vorlesung über Zahlentheorie 4 Aufl. ch. Über die Theorie der ganzen algebraiscen Zahlen, Druck und Verlag, Braunschweig, 1894. | MR
[6] Eilenberg, S.: Automata, Languages, and Machines. vol. A, Academic Press, New York, 1974. | MR | Zbl
[7] El Bashir, R., Hurt, J., Jančařík, A., Kepka, T.: Simple commutative semirings. J. Algebra 236 (2001), 277–306. | DOI | MR | Zbl
[8] Gilmer, R.: Some applications of the Hilfsatz von Dedekind-Mertens. Math. Scand. 20 (1967), 240–244. | DOI | MR
[9] Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York, 1972. | MR | Zbl
[10] Glazek, K.: A guide to the literature on semirings and their applications in mathematics and information sciences. Kluwer Academic Publishers, Dordrecht, 2002. | MR | Zbl
[11] Golan, J.S.: Semirings and Their Applications. Kluwer Academic Publishers, Dordrecht, 1999. | MR | Zbl
[12] Golan, J.S.: Power Algebras over Semirings: with Applications in Mathematics and Computer Science. vol. 488, Springer, 1999. | MR | Zbl
[13] Hebisch, U., Weinert, H.J.: On Euclidean semirings. Kyungpook Math. J. 27 (1987), 61–88. | MR | Zbl
[14] Hebisch, U., Weinert, H.J.: Semirings - Algebraic Theory and Applications in Computer Science. World Scientific, Singapore, 1998. | MR | Zbl
[15] Kim, C.B.: A note on the localization in semirings. J. Sci. Inst. Kookmin Univ. 3 (1985), 13–19.
[16] Kurosh, A.G.: Lectures in General Algebra. Pergamon Press, Oxford, 1965, translated by A. Swinfen. | MR | Zbl
[17] LaGrassa, S.: Semirings: Ideals and Polynomials. Ph.D. thesis, University of Iowa, 1995. | MR
[18] Larsen, M.D., McCarthy, P.J.: Multiplicative Theory of Ideals. Academic Press, New York, 1971. | MR | Zbl
[19] Naoum, A.G., Mijbass, A.S.: Weak cancellation modules. Kyungpook Math. J. 37 (1997), 73–82. | MR | Zbl
[20] Nasehpour, P.: On the content of polynomials over semirings and its applications. J. Algebra Appl. 15 (5) (2016), 32, 1650088. | DOI | MR
[21] Nasehpour, P.: Valuation semirings. J. Algebra Appl. 16 (11) (2018), 23, 1850073, arXiv:1509.03354.
[22] Nasehpour, P., Yassemi, S.: $M$-cancellation ideals. Kyungpook Math. J. 40 (2000), 259–263. | MR | Zbl
[23] Noronha Galvão, M.L.: Ideals in the semiring $\mathbb{N}$. Portugal. Math. 37 (1978), 231–235. | MR
[24] Prüfer, H.: Untersuchungen über Teilbarkeitseigenschaften in Körpern. J. Reine Angew. Math. 168 (1932), 1–36. | MR | Zbl
[25] Smith, F.: Some remarks on multiplication modules. Arch. Math. (Basel) 50 (1988), 223–235. | DOI | MR | Zbl
[27] Vandiver, H.S.: Note on a simple type of algebra in which cancellation law of addition does not hold. Bull. Amer. Math. Soc. 40 (1934), 914–920. | DOI | MR
Cité par Sources :