Invertible ideals and Gaussian semirings
Archivum mathematicum, Tome 53 (2017) no. 3, pp. 179-192
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as $(I + J)(I \cap J) = IJ$ for all ideals $I$, $J$ of $S$. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings.
In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as $(I + J)(I \cap J) = IJ$ for all ideals $I$, $J$ of $S$. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings.
DOI : 10.5817/AM2017-3-179
Classification : 06D75, 13B25, 13F25, 16Y60
Keywords: semiring; semiring polynomials; Gaussian semiring; cancellation ideals; invertible ideals
@article{10_5817_AM2017_3_179,
     author = {Ghalandarzadeh, Shaban and Nasehpour, Peyman and Razavi, Rafieh},
     title = {Invertible ideals and {Gaussian} semirings},
     journal = {Archivum mathematicum},
     pages = {179--192},
     year = {2017},
     volume = {53},
     number = {3},
     doi = {10.5817/AM2017-3-179},
     mrnumber = {3708771},
     zbl = {06819524},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-179/}
}
TY  - JOUR
AU  - Ghalandarzadeh, Shaban
AU  - Nasehpour, Peyman
AU  - Razavi, Rafieh
TI  - Invertible ideals and Gaussian semirings
JO  - Archivum mathematicum
PY  - 2017
SP  - 179
EP  - 192
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-179/
DO  - 10.5817/AM2017-3-179
LA  - en
ID  - 10_5817_AM2017_3_179
ER  - 
%0 Journal Article
%A Ghalandarzadeh, Shaban
%A Nasehpour, Peyman
%A Razavi, Rafieh
%T Invertible ideals and Gaussian semirings
%J Archivum mathematicum
%D 2017
%P 179-192
%V 53
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-179/
%R 10.5817/AM2017-3-179
%G en
%F 10_5817_AM2017_3_179
Ghalandarzadeh, Shaban; Nasehpour, Peyman; Razavi, Rafieh. Invertible ideals and Gaussian semirings. Archivum mathematicum, Tome 53 (2017) no. 3, pp. 179-192. doi: 10.5817/AM2017-3-179

[1] Arnold, J.T., Gilmer, R.: On the content of polynomials. Proc. Amer. Math. Soc. 40 (1) (1970), 556–562. | DOI | MR

[2] Bazzoni, S., Glaz, S.: Gaussian properties of total rings of quotients. J. Algebra 310 (1) (2007), 180–193. | DOI | MR | Zbl

[3] Bourne, S.: The Jacobson radical of a semiring. Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 163–170. | DOI | MR | Zbl

[4] Dale, L., Pitts, J.D.: Euclidean and Gaussian semirings. Kyungpook Math. J. 18 (1978), 17–22. | MR | Zbl

[5] Dedekind, R.: Supplement XI to P.G. Lejeune Dirichlet: Vorlesung über Zahlentheorie 4 Aufl. ch. Über die Theorie der ganzen algebraiscen Zahlen, Druck und Verlag, Braunschweig, 1894. | MR

[6] Eilenberg, S.: Automata, Languages, and Machines. vol. A, Academic Press, New York, 1974. | MR | Zbl

[7] El Bashir, R., Hurt, J., Jančařík, A., Kepka, T.: Simple commutative semirings. J. Algebra 236 (2001), 277–306. | DOI | MR | Zbl

[8] Gilmer, R.: Some applications of the Hilfsatz von Dedekind-Mertens. Math. Scand. 20 (1967), 240–244. | DOI | MR

[9] Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York, 1972. | MR | Zbl

[10] Glazek, K.: A guide to the literature on semirings and their applications in mathematics and information sciences. Kluwer Academic Publishers, Dordrecht, 2002. | MR | Zbl

[11] Golan, J.S.: Semirings and Their Applications. Kluwer Academic Publishers, Dordrecht, 1999. | MR | Zbl

[12] Golan, J.S.: Power Algebras over Semirings: with Applications in Mathematics and Computer Science. vol. 488, Springer, 1999. | MR | Zbl

[13] Hebisch, U., Weinert, H.J.: On Euclidean semirings. Kyungpook Math. J. 27 (1987), 61–88. | MR | Zbl

[14] Hebisch, U., Weinert, H.J.: Semirings - Algebraic Theory and Applications in Computer Science. World Scientific, Singapore, 1998. | MR | Zbl

[15] Kim, C.B.: A note on the localization in semirings. J. Sci. Inst. Kookmin Univ. 3 (1985), 13–19.

[16] Kurosh, A.G.: Lectures in General Algebra. Pergamon Press, Oxford, 1965, translated by A. Swinfen. | MR | Zbl

[17] LaGrassa, S.: Semirings: Ideals and Polynomials. Ph.D. thesis, University of Iowa, 1995. | MR

[18] Larsen, M.D., McCarthy, P.J.: Multiplicative Theory of Ideals. Academic Press, New York, 1971. | MR | Zbl

[19] Naoum, A.G., Mijbass, A.S.: Weak cancellation modules. Kyungpook Math. J. 37 (1997), 73–82. | MR | Zbl

[20] Nasehpour, P.: On the content of polynomials over semirings and its applications. J. Algebra Appl. 15 (5) (2016), 32, 1650088. | DOI | MR

[21] Nasehpour, P.: Valuation semirings. J. Algebra Appl. 16 (11) (2018), 23, 1850073, arXiv:1509.03354.

[22] Nasehpour, P., Yassemi, S.: $M$-cancellation ideals. Kyungpook Math. J. 40 (2000), 259–263. | MR | Zbl

[23] Noronha Galvão, M.L.: Ideals in the semiring $\mathbb{N}$. Portugal. Math. 37 (1978), 231–235. | MR

[24] Prüfer, H.: Untersuchungen über Teilbarkeitseigenschaften in Körpern. J. Reine Angew. Math. 168 (1932), 1–36. | MR | Zbl

[25] Smith, F.: Some remarks on multiplication modules. Arch. Math. (Basel) 50 (1988), 223–235. | DOI | MR | Zbl

[27] Vandiver, H.S.: Note on a simple type of algebra in which cancellation law of addition does not hold. Bull. Amer. Math. Soc. 40 (1934), 914–920. | DOI | MR

Cité par Sources :