Keywords: fixed point; compatible mappings; non-Archimedean Menger probabilistic normed spaces
@article{10_5817_AM2017_3_161,
author = {Rashid, M.H.M.},
title = {Some fixed point theorems in generating spaces of quasi-metric family},
journal = {Archivum mathematicum},
pages = {161--177},
year = {2017},
volume = {53},
number = {3},
doi = {10.5817/AM2017-3-161},
mrnumber = {3708770},
zbl = {06819523},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-161/}
}
TY - JOUR AU - Rashid, M.H.M. TI - Some fixed point theorems in generating spaces of quasi-metric family JO - Archivum mathematicum PY - 2017 SP - 161 EP - 177 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-161/ DO - 10.5817/AM2017-3-161 LA - en ID - 10_5817_AM2017_3_161 ER -
Rashid, M.H.M. Some fixed point theorems in generating spaces of quasi-metric family. Archivum mathematicum, Tome 53 (2017) no. 3, pp. 161-177. doi: 10.5817/AM2017-3-161
[1] Chang, S.S.: Fixed point theorem in problabilistic metric spaces with applications. Scientia Sinica (Series A) 26 (1983), 1144–1155. | MR
[2] Chang, S.S.: On the theory of problabilistic metric spaces with applications. Acta Math. Sinica (N.S.) 1 (4) (1985), 366–377. | DOI | MR
[3] Chang, S.S., Xiang, S.W.: Topological structure and metrization problem of probabilistic metric spaces and application. J. Qufu Norm. Univ. Nat. Sci. Ed. 16 (3) (1990), 1–8. | MR
[4] Cho, Y.J., Park, K.S., Chang, S.S.: Fixed point theorems in metric spaces and probabilistic metric spaces. Internat. J. Math. Math. Sci. 19 (2) (1996), 243–252. | DOI | MR | Zbl
[5] Drossos, C.A.: Stochastic Menger spaces and convergence in probability. Rev. Roumaine Math. Pures Appl. 22 (1977), 1069–1076. | MR | Zbl
[6] Fan, J.X.: On the generalizations of Ekeland’s vartional principle and Caristi’s fixed point theorem. The 6th National Conference on Fixed point Theory Variational Inequalities and Probabilistic Metric Spaces Theory, Qingdao, China, 1993.
[7] He, P.J.: The variational principle in fuzzy metric spaces and its applications. Fuzzy Sets and Systems 45 (1992), 389–394. | DOI | MR | Zbl
[8] Hegedus, M., Szilagyi, T.: Equivalence conditions and a new fixed point theorem in the theory of contraction mappings. Math. Japon. 25 (1) (1980), 147–157. | MR
[9] Jungck, G.: Compatible maps and common fixed points. Internat. J. Math. Math. Sci. 9 (1986), 771–779. | DOI | MR
[10] Koireng, M.M., Ningombam, L., Rohen, Y.: Common fixed points of compatible mappings of type $(R)$. Gen. Math. Notes 10 (1) (2012), 58–62.
[11] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28 (1942), 535–537. | DOI | MR | Zbl
[12] Rohen, Y., Singh, M.R., Shambhu, L.: Common fixed points of compatible mapping of type $(C)$ in Banach spaces. Proc. Math. Soc. 20 (2004), 77–87.
[13] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313–334. | DOI | MR | Zbl
[14] Schweizer, B., Sklar, A.: Probabilistic metric spaces. North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983. | MR | Zbl
[15] Singh, B., Chauhan, M.S.: On common fixed points of four mappings. Bull. Calcutta Math. Soc. 88 (1996), 451–456. | MR | Zbl
[16] Singh, S.P., Meade, B.A.: On common fixed point theorems. Bull. Austral. Math. Soc. 16 (1977), 49–53. | DOI | MR | Zbl
[17] Tan, N.X.: Generalized probabilistic metric spaces and fixed point theorems. Math. Nachr. 129 (1986), 205–218. | DOI | MR | Zbl
Cité par Sources :