Isometry invariant Finsler metrics on Hilbert spaces
Archivum mathematicum, Tome 53 (2017) no. 3, pp. 141-153
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study isometry-invariant Finsler metrics on inner product spaces over $\mathbb{R}$ or $\mathbb{C}$, i.e. the Finsler metrics which do not change under the action of all isometries of the inner product space. We give a new proof of the analytic description of all such metrics. In this article the most general concept of the Finsler metric is considered without any additional assumptions that are usually built into its definition. However, we present refined versions of the described results for more specific classes of metrics, including the class of Riemannian metrics. Our main result states that for an isometry-invariant Finsler metric the only possible linear maps under which the metric is invariant are scalar multiples of isometries. Furthermore, we characterize the metrics invariant with respect to all linear maps of this type.
In this paper we study isometry-invariant Finsler metrics on inner product spaces over $\mathbb{R}$ or $\mathbb{C}$, i.e. the Finsler metrics which do not change under the action of all isometries of the inner product space. We give a new proof of the analytic description of all such metrics. In this article the most general concept of the Finsler metric is considered without any additional assumptions that are usually built into its definition. However, we present refined versions of the described results for more specific classes of metrics, including the class of Riemannian metrics. Our main result states that for an isometry-invariant Finsler metric the only possible linear maps under which the metric is invariant are scalar multiples of isometries. Furthermore, we characterize the metrics invariant with respect to all linear maps of this type.
DOI : 10.5817/AM2017-3-141
Classification : 53B40, 53C60, 58B20
Keywords: Finsler metric; unitary invariance; isometries; Riemannian metric
@article{10_5817_AM2017_3_141,
     author = {Bilokopytov, Eugene},
     title = {Isometry invariant {Finsler} metrics on {Hilbert} spaces},
     journal = {Archivum mathematicum},
     pages = {141--153},
     year = {2017},
     volume = {53},
     number = {3},
     doi = {10.5817/AM2017-3-141},
     mrnumber = {3708768},
     zbl = {06819521},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-141/}
}
TY  - JOUR
AU  - Bilokopytov, Eugene
TI  - Isometry invariant Finsler metrics on Hilbert spaces
JO  - Archivum mathematicum
PY  - 2017
SP  - 141
EP  - 153
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-141/
DO  - 10.5817/AM2017-3-141
LA  - en
ID  - 10_5817_AM2017_3_141
ER  - 
%0 Journal Article
%A Bilokopytov, Eugene
%T Isometry invariant Finsler metrics on Hilbert spaces
%J Archivum mathematicum
%D 2017
%P 141-153
%V 53
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-141/
%R 10.5817/AM2017-3-141
%G en
%F 10_5817_AM2017_3_141
Bilokopytov, Eugene. Isometry invariant Finsler metrics on Hilbert spaces. Archivum mathematicum, Tome 53 (2017) no. 3, pp. 141-153. doi: 10.5817/AM2017-3-141

[1] Abate, M., Patrizio, G.: Finsler metrics – a global approach. Lecture Notes in Mathematics, vol. 1591, Springer Verlag, Berlin, 1994, With applications to geometric function theory. | DOI | MR | Zbl

[2] Arcozzi, N., Rochberg, R., Sawyer, E., Wick, B.D.: Distance functions for reproducing kernel Hilbert spaces. Function spaces in modern analysis, Contemp. Math., vol. 547, Amer. Math. Soc., Providence, RI, 2011, pp. 25–53. | MR | Zbl

[3] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate Studies in Math., vol. 33, American Mathematical Society, Providence, RI, 2001, pp. xiv+415. | MR | Zbl

[4] Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc. 92 (1959), 267–290. | DOI | MR | Zbl

[5] McCarthy, P.J., Rutz, S.F.: The general four-dimensional spherically symmetric Finsler space. Gen. Relativity Gravitation 25 (6) (1993), 589–602. | DOI | MR | Zbl

[6] Xia, H., Zhong, Ch.: A classification of unitary invariant weakly complex Berwald metrics of constant holomorphic curvature. Differential Geom. Appl. 43 (2015), 1–20. | DOI | MR | Zbl

[7] Zhong, Ch.: On unitary invariant strongly pseudoconvex complex Finsler metrics. Differential Geom. Appl. 40 (2015), 159–186. | DOI | MR | Zbl

[8] Zhou, L.: Spherically symmetric Finsler metrics in $R^n$. Publ. Math. Debrecen 80 (1–2) (2012), 67–77. | MR

Cité par Sources :