Keywords: Finsler metric; unitary invariance; isometries; Riemannian metric
@article{10_5817_AM2017_3_141,
author = {Bilokopytov, Eugene},
title = {Isometry invariant {Finsler} metrics on {Hilbert} spaces},
journal = {Archivum mathematicum},
pages = {141--153},
year = {2017},
volume = {53},
number = {3},
doi = {10.5817/AM2017-3-141},
mrnumber = {3708768},
zbl = {06819521},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-3-141/}
}
Bilokopytov, Eugene. Isometry invariant Finsler metrics on Hilbert spaces. Archivum mathematicum, Tome 53 (2017) no. 3, pp. 141-153. doi: 10.5817/AM2017-3-141
[1] Abate, M., Patrizio, G.: Finsler metrics – a global approach. Lecture Notes in Mathematics, vol. 1591, Springer Verlag, Berlin, 1994, With applications to geometric function theory. | DOI | MR | Zbl
[2] Arcozzi, N., Rochberg, R., Sawyer, E., Wick, B.D.: Distance functions for reproducing kernel Hilbert spaces. Function spaces in modern analysis, Contemp. Math., vol. 547, Amer. Math. Soc., Providence, RI, 2011, pp. 25–53. | MR | Zbl
[3] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate Studies in Math., vol. 33, American Mathematical Society, Providence, RI, 2001, pp. xiv+415. | MR | Zbl
[4] Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc. 92 (1959), 267–290. | DOI | MR | Zbl
[5] McCarthy, P.J., Rutz, S.F.: The general four-dimensional spherically symmetric Finsler space. Gen. Relativity Gravitation 25 (6) (1993), 589–602. | DOI | MR | Zbl
[6] Xia, H., Zhong, Ch.: A classification of unitary invariant weakly complex Berwald metrics of constant holomorphic curvature. Differential Geom. Appl. 43 (2015), 1–20. | DOI | MR | Zbl
[7] Zhong, Ch.: On unitary invariant strongly pseudoconvex complex Finsler metrics. Differential Geom. Appl. 40 (2015), 159–186. | DOI | MR | Zbl
[8] Zhou, L.: Spherically symmetric Finsler metrics in $R^n$. Publ. Math. Debrecen 80 (1–2) (2012), 67–77. | MR
Cité par Sources :