Keywords: cozero set; $\omega $-open set; Lindelöf; $z$-Lindelöf
@article{10_5817_AM2017_2_93,
author = {Al-Omari, Ahmad and Noiri, Takashi},
title = {Characterizations of $z${-Lindel\"of} spaces},
journal = {Archivum mathematicum},
pages = {93--99},
year = {2017},
volume = {53},
number = {2},
doi = {10.5817/AM2017-2-93},
mrnumber = {3672783},
zbl = {06770054},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-2-93/}
}
Al-Omari, Ahmad; Noiri, Takashi. Characterizations of $z$-Lindelöf spaces. Archivum mathematicum, Tome 53 (2017) no. 2, pp. 93-99. doi: 10.5817/AM2017-2-93
[1] Al-Ani, A.T.: $z$-compact spaces. Journal of University of Anbar for Pure Science 3 (1) (2009), 118–121.
[2] Al-Omari, A.: On ideal topological spaces via cozero sets. Questions Answers Gen. Topology 34 (2) (2016), 83–91. | MR | Zbl
[3] Al-Omari, A.: Some operators in ideal topological spaces via cozero sets. Acta Univ. Apulensis 36 (4) (2016), 1–12. | MR
[4] Al-Omari, A., Noiri, T.: On quasi compact spaces and some functions. accepted in Bol. Soc. Paran. Mat. 36 (4) (2018), 121–130. | DOI
[5] Bayhan, S., Kanibir, A., McCluskey, A., Reilly, I.L.: On almost $z$-supercontinuity. Filomat 27 (6) (2013), 965–969. | DOI | MR | Zbl
[6] Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand Co., Inc., Princeton, N. J., 1960. | MR | Zbl
[7] Hdeib, H.Z.: $\omega $-closed mappings. Rev. Colombiana Mat. 16 (1–2) (1982), 65–78. | MR | Zbl
[8] Kohli, J.K., Singh, D., Kumar, R.: Generalizations of $Z$-supercontinuous functions and $D_{\delta }$-supercontinuous functions. Appl. Gen. Topology 9 (2) (2008), 239–251. | DOI | MR | Zbl
[9] Singal, M.K., Niemse, S.B.: $z$-continuous mappings. Math. Student 66 (1997), 193–210. | MR
Cité par Sources :