On Jacobi fields and a canonical connection in sub-Riemannian geometry
Archivum mathematicum, Tome 53 (2017) no. 2, pp. 77-92
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
DOI :
10.5817/AM2017-2-77
Classification :
53B15, 53B21, 53C17
Keywords: sub-Riemannian geometry; curvature; connection; Jacobi fields
Keywords: sub-Riemannian geometry; curvature; connection; Jacobi fields
@article{10_5817_AM2017_2_77,
author = {Barilari, Davide and Rizzi, Luca},
title = {On {Jacobi} fields and a canonical connection in {sub-Riemannian} geometry},
journal = {Archivum mathematicum},
pages = {77--92},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2017},
doi = {10.5817/AM2017-2-77},
mrnumber = {3672782},
zbl = {06770053},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-2-77/}
}
TY - JOUR AU - Barilari, Davide AU - Rizzi, Luca TI - On Jacobi fields and a canonical connection in sub-Riemannian geometry JO - Archivum mathematicum PY - 2017 SP - 77 EP - 92 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-2-77/ DO - 10.5817/AM2017-2-77 LA - en ID - 10_5817_AM2017_2_77 ER -
%0 Journal Article %A Barilari, Davide %A Rizzi, Luca %T On Jacobi fields and a canonical connection in sub-Riemannian geometry %J Archivum mathematicum %D 2017 %P 77-92 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-2-77/ %R 10.5817/AM2017-2-77 %G en %F 10_5817_AM2017_2_77
Barilari, Davide; Rizzi, Luca. On Jacobi fields and a canonical connection in sub-Riemannian geometry. Archivum mathematicum, Tome 53 (2017) no. 2, pp. 77-92. doi: 10.5817/AM2017-2-77
Cité par Sources :