Extending generalized Whitney maps
Archivum mathematicum, Tome 53 (2017) no. 2, pp. 65-76
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For metrizable continua, there exists the well-known notion of a Whitney map. If $X$ is a nonempty, compact, and metric space, then any Whitney map for any closed subset of $2^{X}$ can be extended to a Whitney map for $2^{X}$ [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.
DOI :
10.5817/AM2017-2-65
Classification :
54B20, 54F15
Keywords: extending generalized Whitney map; hyperspace
Keywords: extending generalized Whitney map; hyperspace
@article{10_5817_AM2017_2_65,
author = {Lon\v{c}ar, Ivan},
title = {Extending generalized {Whitney} maps},
journal = {Archivum mathematicum},
pages = {65--76},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2017},
doi = {10.5817/AM2017-2-65},
mrnumber = {3672781},
zbl = {06770052},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-2-65/}
}
Lončar, Ivan. Extending generalized Whitney maps. Archivum mathematicum, Tome 53 (2017) no. 2, pp. 65-76. doi: 10.5817/AM2017-2-65
Cité par Sources :