On the existence of non-linear frames
Archivum mathematicum, Tome 53 (2017) no. 2, pp. 101-109
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal{X}$ is a Banach space such that $\mathcal{X^*}$ has a SRBF, then $\mathcal{X}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal{X}$ has an approximative Schauder frame, then $\mathcal{X^*}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.
A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal{X}$ is a Banach space such that $\mathcal{X^*}$ has a SRBF, then $\mathcal{X}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal{X}$ has an approximative Schauder frame, then $\mathcal{X^*}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.
DOI : 10.5817/AM2017-2-101
Classification : 42C15, 46B15
Keywords: Banach frames; retro Banach frames; approximative Schauder frames
@article{10_5817_AM2017_2_101,
     author = {Jahan, Shah and Kumar, Varinder and Kaushik, S.K.},
     title = {On the existence of non-linear frames},
     journal = {Archivum mathematicum},
     pages = {101--109},
     year = {2017},
     volume = {53},
     number = {2},
     doi = {10.5817/AM2017-2-101},
     mrnumber = {3672784},
     zbl = {06770055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-2-101/}
}
TY  - JOUR
AU  - Jahan, Shah
AU  - Kumar, Varinder
AU  - Kaushik, S.K.
TI  - On the existence of non-linear frames
JO  - Archivum mathematicum
PY  - 2017
SP  - 101
EP  - 109
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-2-101/
DO  - 10.5817/AM2017-2-101
LA  - en
ID  - 10_5817_AM2017_2_101
ER  - 
%0 Journal Article
%A Jahan, Shah
%A Kumar, Varinder
%A Kaushik, S.K.
%T On the existence of non-linear frames
%J Archivum mathematicum
%D 2017
%P 101-109
%V 53
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-2-101/
%R 10.5817/AM2017-2-101
%G en
%F 10_5817_AM2017_2_101
Jahan, Shah; Kumar, Varinder; Kaushik, S.K. On the existence of non-linear frames. Archivum mathematicum, Tome 53 (2017) no. 2, pp. 101-109. doi: 10.5817/AM2017-2-101

[1] Casazza, P.G.: The art of frame theory. Taiwanese J. Math. 4 (2000), 129–201. | DOI | MR | Zbl

[2] Casazza, P.G., Dilworth, S.J., Odell, E., Th.Schlumprecht, , Zsak, A.: Cofficient quantization for frames in Banach spaces. J. Math. Anal. Appl. 348 (2008), 66–86. | DOI | MR

[3] Casazza, P.G., Han, D., Larson, D.: Frames for Banach spaces. Contemp. Math. 247 (1999), 149–181. | DOI | MR | Zbl

[4] Christensen, O.: Frames and bases (An introductory course). Birkhäuser, Boston, 2008. | MR | Zbl

[5] Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341–366. | DOI | MR | Zbl

[6] Feichtinger, H.G., Grochenig, K.H.: A unified approach to atomic decompositions via integrable group representations. Lecture Notes in Math., vol. 1302, Springer, 1988, pp. 52–73. | MR | Zbl

[7] Grochenig, K.H.: Describing functions: Atomic decompositions versus frames. Monatsh. Math. 112 (1991), 1–41. | DOI | MR | Zbl

[8] Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Amer. Math. Soc. 147 (2000), 1–91. | MR | Zbl

[9] Jain, P.K., Kaushik, S.K., Vashisht, L.K.: Banach frames for conjugate Banach spaces. Z. Anal. Anwendungen 23 (2004), 713–720. | DOI | MR | Zbl

[10] Kaushik, S.K., Sharma, S.K.: On approximative atomic decompositions in Banach spaces. Communications in Mathematics and Applications 3 (3) (2012), 293–301.

[11] Kaushik, S.K., Sharma, S.K.: Generalized Schauder frames. Arch. Math. (Brno) 50 (2014), 39–49. | DOI | MR | Zbl

[12] Kaushik, S.K., Sharma, S.K., Poumai, K.T.: On Schauder frames in conjugate Banach spaces. Journal of Mathematics 2013 (2013), 4 pages, Article ID 318659. | MR | Zbl

[13] Poumai, K.T., Kaushik, S.K.: Retro Banach frames, almost exact retro Banach frames in Banach spaces. Bulletin Math. Anal. Appl. 7 (1) (2015), 38–48. | MR

[14] Sharma, S.K.: On Bi-Banach frames in Banach spaces. Int. J. Wavelets Multiresolut Inf. Process 12 (2) (2014), 10 pages, 1450015. | DOI | MR | Zbl

[15] Singer, I.: Best approximation in normed linear spaces by elements of linear subspaces. Springer-Verlag , New York, Heidelberg, Berlin, 1970. | MR | Zbl

[16] Singer, I.: Bases in Banach spaces II. Springer-Verlag, New York, Heidelberg, Berlin, 1981. | Zbl

[17] Terekhin, P.A.: Frames in Banach spaces. Funct. Anal. Appl. 44 (3) (2010), 199–208. | DOI | MR | Zbl

Cité par Sources :