Solutions of Riemann–Weber type half-linear differential equation
Archivum mathematicum, Tome 53 (2017) no. 1, pp. 49-61
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish an asymptotic formula for a pair of linearly independent solutions of the subcritical Riemann–Weber type half-linear differential equation. We also complement the results of the author and M. Ünal, Acta Math. Hungar. 120 (2008), 147–163, where the equation was considered in the critical case.
We establish an asymptotic formula for a pair of linearly independent solutions of the subcritical Riemann–Weber type half-linear differential equation. We also complement the results of the author and M. Ünal, Acta Math. Hungar. 120 (2008), 147–163, where the equation was considered in the critical case.
DOI : 10.5817/AM2017-1-49
Classification : 34C10
Keywords: Riemann–Weber half-linear differential equation; principal solution; modified Riccati equation; asymptotic formula
@article{10_5817_AM2017_1_49,
     author = {Do\v{s}l\'y, Ond\v{r}ej},
     title = {Solutions of {Riemann{\textendash}Weber} type half-linear differential equation},
     journal = {Archivum mathematicum},
     pages = {49--61},
     year = {2017},
     volume = {53},
     number = {1},
     doi = {10.5817/AM2017-1-49},
     mrnumber = {3636681},
     zbl = {06738498},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-49/}
}
TY  - JOUR
AU  - Došlý, Ondřej
TI  - Solutions of Riemann–Weber type half-linear differential equation
JO  - Archivum mathematicum
PY  - 2017
SP  - 49
EP  - 61
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-49/
DO  - 10.5817/AM2017-1-49
LA  - en
ID  - 10_5817_AM2017_1_49
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%T Solutions of Riemann–Weber type half-linear differential equation
%J Archivum mathematicum
%D 2017
%P 49-61
%V 53
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-49/
%R 10.5817/AM2017-1-49
%G en
%F 10_5817_AM2017_1_49
Došlý, Ondřej. Solutions of Riemann–Weber type half-linear differential equation. Archivum mathematicum, Tome 53 (2017) no. 1, pp. 49-61. doi: 10.5817/AM2017-1-49

[1] Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Differential Equations. Kluwer Acad. Publ., Dordrecht, Boston, London, 2002. | MR

[2] Došlý, O., Elbert, Á.: Integral characterization of principal solution of half-linear differential equations. Studia Sci. Math. Hungar. 36 (2000), 455–469. | MR

[3] Došlý, O., Fišnarová, S.: Half-linear oscillation criteria: Perturbation in term involving derivative. Nonlinear Anal. 73 (2010), 3756–3766. | DOI | MR | Zbl

[4] Došlý, O., Řehák, P.: Half-Linear Differential Equations. vol. 202, North-Holland Mathematical Studies, Elsevier, Amsterdam, 2005. | MR | Zbl

[5] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations. Acta Math. Hungar. 120 (2008), 147–163. | DOI | MR | Zbl

[6] Došlý, O., Yamaoka, N.: Oscillation constants for second-order ordinary differential equations related to elliptic equations with $p$-Laplacian. Nonlinear Anal. 113 (2015), 115–136. | MR | Zbl

[7] Elbert, Á.: A half-linear second order differential equation. Qualitative theory of differential equations, Vol. I, II (Szeged, 1979), Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam, New York, 1981, pp. 153–180. | MR | Zbl

[8] Elbert, Á., Schneider, A.: Perturbations of the half-linear Euler differential equation. Results Math. 37 (2000), 56–83. | DOI | MR | Zbl

[9] Hartman, P.: Ordinary Differential Equations. John Willey and Sons, Inc., New York, London, Sydney, 1974. | MR

[10] Mirzov, J.D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 (2004). | MR | Zbl

Cité par Sources :