Keywords: Riemann–Weber half-linear differential equation; principal solution; modified Riccati equation; asymptotic formula
@article{10_5817_AM2017_1_49,
author = {Do\v{s}l\'y, Ond\v{r}ej},
title = {Solutions of {Riemann{\textendash}Weber} type half-linear differential equation},
journal = {Archivum mathematicum},
pages = {49--61},
year = {2017},
volume = {53},
number = {1},
doi = {10.5817/AM2017-1-49},
mrnumber = {3636681},
zbl = {06738498},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-49/}
}
Došlý, Ondřej. Solutions of Riemann–Weber type half-linear differential equation. Archivum mathematicum, Tome 53 (2017) no. 1, pp. 49-61. doi: 10.5817/AM2017-1-49
[1] Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Differential Equations. Kluwer Acad. Publ., Dordrecht, Boston, London, 2002. | MR
[2] Došlý, O., Elbert, Á.: Integral characterization of principal solution of half-linear differential equations. Studia Sci. Math. Hungar. 36 (2000), 455–469. | MR
[3] Došlý, O., Fišnarová, S.: Half-linear oscillation criteria: Perturbation in term involving derivative. Nonlinear Anal. 73 (2010), 3756–3766. | DOI | MR | Zbl
[4] Došlý, O., Řehák, P.: Half-Linear Differential Equations. vol. 202, North-Holland Mathematical Studies, Elsevier, Amsterdam, 2005. | MR | Zbl
[5] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations. Acta Math. Hungar. 120 (2008), 147–163. | DOI | MR | Zbl
[6] Došlý, O., Yamaoka, N.: Oscillation constants for second-order ordinary differential equations related to elliptic equations with $p$-Laplacian. Nonlinear Anal. 113 (2015), 115–136. | MR | Zbl
[7] Elbert, Á.: A half-linear second order differential equation. Qualitative theory of differential equations, Vol. I, II (Szeged, 1979), Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam, New York, 1981, pp. 153–180. | MR | Zbl
[8] Elbert, Á., Schneider, A.: Perturbations of the half-linear Euler differential equation. Results Math. 37 (2000), 56–83. | DOI | MR | Zbl
[9] Hartman, P.: Ordinary Differential Equations. John Willey and Sons, Inc., New York, London, Sydney, 1974. | MR
[10] Mirzov, J.D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 (2004). | MR | Zbl
Cité par Sources :