Keywords: product manifolds; trans-Sasakian manifolds; generalized Kählerian manifolds; generalized contact structures; transformation of generalized almost contact structures; generalized almost complex structures
@article{10_5817_AM2017_1_35,
author = {Bouzir, Habib and Beldjilali, Gherici and Belkhelfa, Mohamed and Wade, Aissa},
title = {Generalized {K\"ahlerian} manifolds and transformation of generalized contact structures},
journal = {Archivum mathematicum},
pages = {35--48},
year = {2017},
volume = {53},
number = {1},
doi = {10.5817/AM2017-1-35},
mrnumber = {3636680},
zbl = {06738497},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-35/}
}
TY - JOUR AU - Bouzir, Habib AU - Beldjilali, Gherici AU - Belkhelfa, Mohamed AU - Wade, Aissa TI - Generalized Kählerian manifolds and transformation of generalized contact structures JO - Archivum mathematicum PY - 2017 SP - 35 EP - 48 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-35/ DO - 10.5817/AM2017-1-35 LA - en ID - 10_5817_AM2017_1_35 ER -
%0 Journal Article %A Bouzir, Habib %A Beldjilali, Gherici %A Belkhelfa, Mohamed %A Wade, Aissa %T Generalized Kählerian manifolds and transformation of generalized contact structures %J Archivum mathematicum %D 2017 %P 35-48 %V 53 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-35/ %R 10.5817/AM2017-1-35 %G en %F 10_5817_AM2017_1_35
Bouzir, Habib; Beldjilali, Gherici; Belkhelfa, Mohamed; Wade, Aissa. Generalized Kählerian manifolds and transformation of generalized contact structures. Archivum mathematicum, Tome 53 (2017) no. 1, pp. 35-48. doi: 10.5817/AM2017-1-35
[1] Apostolov, V., Gualtieri, M.: Generalized Kähler manifolds, commuting complex structures, and split tangent bundles. Comm. Math. Phys. 2 (2007), 561–575. | DOI | MR | Zbl
[2] Beem, J.K., Ehrlich, P.E., Powell, Th.G.: Warped product manifolds in relativity. Selected studies: physics-astrophysics, mathematics, history of science, North-Holland, Amsterdam-New York, 1982, pp. 41–56. | MR | Zbl
[3] Beldjilali, G., Belkhelfa, M.: Kählerian structures and $\mathcal{D}$-homothetic Bi-warping. J. Geom. Symmetry Phys. 42 (2016), 1–13. | MR
[4] Blair, D.E.: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, vol. 509, Springer, 1976, pp. 17–35. | MR | Zbl
[5] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, vol. 203, Birkhäuser Boston, 2002. | MR | Zbl
[6] Blair, D.E.: $\mathcal{D}$-homothetic warping. Publ. Inst. Math. (Beograd) (N.S.) 94 (108) (2013), 47–54. | DOI | MR
[7] Blair, D.E., Oubiña, J.A.: Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Mat. 34 (1) (1990), 199–207. | DOI | MR | Zbl
[8] Boyer, C.P., Galicki, K., Matzeu, P.: On eta-Einstein Sasakian geometry. Comm. Math. Phys. 262 (2006), 177–208. | DOI | MR | Zbl
[9] Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211 (2) (2007), 726–765. | DOI | MR | Zbl
[10] Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Generalized Kähler and hyper-Kähler quotients. Poisson geometry in mathematics and physics. Contemp. Math. 450 (2008), 61–77. | DOI | MR
[11] Gates, S.J., Jr., , Hull, C.M., Rocek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B248 (1984), 157–186. | MR
[12] Goto, R.: Deformations of generalized complex and generalized Kähler structures. J. Differential Geom. 84 (2010), 525–560. | DOI | MR
[13] Goto, R.: Unobstructed K-deformations of generalized complex structures and bi-Hermitian structures. Adv. Math. 231 (2012), 1041–1067. | DOI | MR | Zbl
[14] Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, University of Oxford, 2004, | arXiv | MR
[15] Hitchin, N.: Instantons, Poisson structures and generalized Kähler geometry. Comm. Math. Phys. 265 (1) (2006), 131–164. | DOI | MR | Zbl
[16] Hitchin, N.: Bihermitian metrics on del Pezzo surfaces. J. Symplectic Geom. 5 (1) (2007), 1–8. | DOI | MR
[17] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tôhoku Math. J. 24 (1972), 93–103. | DOI | MR | Zbl
[18] Lin, Y., Tolman, S.: Symmetries in generalized Kähler geometry. Comm. Math. Phys. (2006), 199–222. | DOI | MR | Zbl
[19] Marrero, J.C.: The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. (4) 162 (1) (1992), 77–86. | DOI | MR | Zbl
[20] Olszak, Z.: Normal almost contact metric manifolds of dimension three. Ann. Polon. Math. (1986), 41–50. | DOI | MR | Zbl
[21] Oubiña, J.A.: New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187–193. | MR | Zbl
[22] Poon, Y.S., Wade, A.: Generalized contact structures. J. London Math. Soc. 83 (2) (2011), 333–352. | DOI | MR | Zbl
[23] Sekiya, K.: Generalized almost contact structures and generalized Sasakian structures. Osaka J. Math. 52 (2015), 303–306. | MR | Zbl
[24] Tanno, S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700–717. | MR | Zbl
[25] Tanno, S.: The automorphism groups of almost contact Riemannian manifolds. Tôhoku Math. J. 21 (1969), 21–38. | DOI | MR | Zbl
[26] Vaisman, I.: From generalized Kähler to generalized Sasakian structure. J. Geom. Symmetry Phyd. 18 (2010), 63–86. | MR
[27] Yano, K., Kon, M.: Structures on manifolds. Series in Pure Math., vol. 3, World Scientific, 1984. | MR | Zbl
Cité par Sources :