Generalized Kählerian manifolds and transformation of generalized contact structures
Archivum mathematicum, Tome 53 (2017) no. 1, pp. 35-48
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is two-fold. First, new generalized Kähler manifolds are constructed starting from both classical almost contact metric and almost Kählerian manifolds. Second, the transformation construction on classical Riemannian manifolds is extended to the generalized geometry setting.
The aim of this paper is two-fold. First, new generalized Kähler manifolds are constructed starting from both classical almost contact metric and almost Kählerian manifolds. Second, the transformation construction on classical Riemannian manifolds is extended to the generalized geometry setting.
DOI : 10.5817/AM2017-1-35
Classification : 53C10, 53C15, 53C18, 53D25
Keywords: product manifolds; trans-Sasakian manifolds; generalized Kählerian manifolds; generalized contact structures; transformation of generalized almost contact structures; generalized almost complex structures
@article{10_5817_AM2017_1_35,
     author = {Bouzir, Habib and Beldjilali, Gherici and Belkhelfa, Mohamed and Wade, Aissa},
     title = {Generalized {K\"ahlerian} manifolds and transformation of generalized contact structures},
     journal = {Archivum mathematicum},
     pages = {35--48},
     year = {2017},
     volume = {53},
     number = {1},
     doi = {10.5817/AM2017-1-35},
     mrnumber = {3636680},
     zbl = {06738497},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-35/}
}
TY  - JOUR
AU  - Bouzir, Habib
AU  - Beldjilali, Gherici
AU  - Belkhelfa, Mohamed
AU  - Wade, Aissa
TI  - Generalized Kählerian manifolds and transformation of generalized contact structures
JO  - Archivum mathematicum
PY  - 2017
SP  - 35
EP  - 48
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-35/
DO  - 10.5817/AM2017-1-35
LA  - en
ID  - 10_5817_AM2017_1_35
ER  - 
%0 Journal Article
%A Bouzir, Habib
%A Beldjilali, Gherici
%A Belkhelfa, Mohamed
%A Wade, Aissa
%T Generalized Kählerian manifolds and transformation of generalized contact structures
%J Archivum mathematicum
%D 2017
%P 35-48
%V 53
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-35/
%R 10.5817/AM2017-1-35
%G en
%F 10_5817_AM2017_1_35
Bouzir, Habib; Beldjilali, Gherici; Belkhelfa, Mohamed; Wade, Aissa. Generalized Kählerian manifolds and transformation of generalized contact structures. Archivum mathematicum, Tome 53 (2017) no. 1, pp. 35-48. doi: 10.5817/AM2017-1-35

[1] Apostolov, V., Gualtieri, M.: Generalized Kähler manifolds, commuting complex structures, and split tangent bundles. Comm. Math. Phys. 2 (2007), 561–575. | DOI | MR | Zbl

[2] Beem, J.K., Ehrlich, P.E., Powell, Th.G.: Warped product manifolds in relativity. Selected studies: physics-astrophysics, mathematics, history of science, North-Holland, Amsterdam-New York, 1982, pp. 41–56. | MR | Zbl

[3] Beldjilali, G., Belkhelfa, M.: Kählerian structures and $\mathcal{D}$-homothetic Bi-warping. J. Geom. Symmetry Phys. 42 (2016), 1–13. | MR

[4] Blair, D.E.: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, vol. 509, Springer, 1976, pp. 17–35. | MR | Zbl

[5] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, vol. 203, Birkhäuser Boston, 2002. | MR | Zbl

[6] Blair, D.E.: $\mathcal{D}$-homothetic warping. Publ. Inst. Math. (Beograd) (N.S.) 94 (108) (2013), 47–54. | DOI | MR

[7] Blair, D.E., Oubiña, J.A.: Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Mat. 34 (1) (1990), 199–207. | DOI | MR | Zbl

[8] Boyer, C.P., Galicki, K., Matzeu, P.: On eta-Einstein Sasakian geometry. Comm. Math. Phys. 262 (2006), 177–208. | DOI | MR | Zbl

[9] Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211 (2) (2007), 726–765. | DOI | MR | Zbl

[10] Bursztyn, H., Cavalcanti, G.R., Gualtieri, M.: Generalized Kähler and hyper-Kähler quotients. Poisson geometry in mathematics and physics. Contemp. Math. 450 (2008), 61–77. | DOI | MR

[11] Gates, S.J., Jr., , Hull, C.M., Rocek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B248 (1984), 157–186. | MR

[12] Goto, R.: Deformations of generalized complex and generalized Kähler structures. J. Differential Geom. 84 (2010), 525–560. | DOI | MR

[13] Goto, R.: Unobstructed K-deformations of generalized complex structures and bi-Hermitian structures. Adv. Math. 231 (2012), 1041–1067. | DOI | MR | Zbl

[14] Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, University of Oxford, 2004, | arXiv | MR

[15] Hitchin, N.: Instantons, Poisson structures and generalized Kähler geometry. Comm. Math. Phys. 265 (1) (2006), 131–164. | DOI | MR | Zbl

[16] Hitchin, N.: Bihermitian metrics on del Pezzo surfaces. J. Symplectic Geom. 5 (1) (2007), 1–8. | DOI | MR

[17] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tôhoku Math. J. 24 (1972), 93–103. | DOI | MR | Zbl

[18] Lin, Y., Tolman, S.: Symmetries in generalized Kähler geometry. Comm. Math. Phys. (2006), 199–222. | DOI | MR | Zbl

[19] Marrero, J.C.: The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. (4) 162 (1) (1992), 77–86. | DOI | MR | Zbl

[20] Olszak, Z.: Normal almost contact metric manifolds of dimension three. Ann. Polon. Math. (1986), 41–50. | DOI | MR | Zbl

[21] Oubiña, J.A.: New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187–193. | MR | Zbl

[22] Poon, Y.S., Wade, A.: Generalized contact structures. J. London Math. Soc. 83 (2) (2011), 333–352. | DOI | MR | Zbl

[23] Sekiya, K.: Generalized almost contact structures and generalized Sasakian structures. Osaka J. Math. 52 (2015), 303–306. | MR | Zbl

[24] Tanno, S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700–717. | MR | Zbl

[25] Tanno, S.: The automorphism groups of almost contact Riemannian manifolds. Tôhoku Math. J. 21 (1969), 21–38. | DOI | MR | Zbl

[26] Vaisman, I.: From generalized Kähler to generalized Sasakian structure. J. Geom. Symmetry Phyd. 18 (2010), 63–86. | MR

[27] Yano, K., Kon, M.: Structures on manifolds. Series in Pure Math., vol. 3, World Scientific, 1984. | MR | Zbl

Cité par Sources :