Keywords: global optimization; Branch and Bound method; convex underestimation; piecewise quadratic; explicit solution
@article{10_5817_AM2017_1_19,
author = {Aaid, Djamel and Noui, Amel and Ouanes, Mohand},
title = {New technique for solving univariate global optimization},
journal = {Archivum mathematicum},
pages = {19--33},
year = {2017},
volume = {53},
number = {1},
doi = {10.5817/AM2017-1-19},
mrnumber = {3636679},
zbl = {06738496},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-19/}
}
TY - JOUR AU - Aaid, Djamel AU - Noui, Amel AU - Ouanes, Mohand TI - New technique for solving univariate global optimization JO - Archivum mathematicum PY - 2017 SP - 19 EP - 33 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-19/ DO - 10.5817/AM2017-1-19 LA - en ID - 10_5817_AM2017_1_19 ER -
Aaid, Djamel; Noui, Amel; Ouanes, Mohand. New technique for solving univariate global optimization. Archivum mathematicum, Tome 53 (2017) no. 1, pp. 19-33. doi: 10.5817/AM2017-1-19
[1] Aaid, D.: Étude numérique comparative entre des méthodes de résolution d’un problème de transport à quatre indices avec capacités. Thése de l'université de Constantine (2010), http://bu.umc.edu.dz/theses/math/AAI5587.pdf
[2] Aaid, D., Noui, A., Le Thi, H.A., Zidna, A.: A modified classical algorithm ALPT4C for solving a capacitated four-index transportation problem. Acta Math. Vietnam. 37 (3) (2012), 379–390. | MR | Zbl
[3] Aaid, D., Noui, A., Ouanes, M.: Piecewise quadratic underestimation for global optimization. JSLAROMAD II Tiziouzou. Algeria, 28 – 30 Octobre 2013 (2013).
[4] Aaid, D., Noui, A., Zidna, A., Ouanes, M.: A quadratic branch and bound with Alienor method for global optimization. MAGO'2014, Málaga, Spain, 1 – 4 September, 2014.
[5] Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, alpha BB, for general twice differentiable NLPs – II. Implementation and computational results. Internat. J. Comput. Appl. in Chem. Engrg. 29 (3) (1998), 1159–1179. | DOI | MR
[6] Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underestimators: box-constrained NLP problems. J. Global Optim. 29 (3) (2004), 249–264. | DOI | MR | Zbl
[7] Bendiab, O., Cherruault, Y.: A new method for global optimization in two dimensions. Int. J. Biomed. Comput. 38 (1) (1995), 71–73. | DOI
[8] Benneouala, T., Cherruault, Y.: Alienor method for global optimization with a large number of variables. Kybernetes 34 (7–8) (2005), 1104–1111. | DOI | Zbl
[9] Caratzoulas, S., Floudas, C.A.: A trigonometric convex underestimator for the base functions in Fourier space. J. Optim. Theory Appl. 124 (2) (2005), 336–362. | DOI | MR
[10] Cartis, C., Fowkes, J.M., Gould, N.I.M.: Branching and bounding improvements for global optimization algorithms with Lipschitz continuity properties. J. Global Optim. 61 (3) (2015), 429–457. | DOI | MR | Zbl
[11] Cherruault, Y., Mora, G.: Optimisation globale : théorie des courbes alpha-denses. Economica Paris, 2005.
[12] Chrysanthos, E., Gounaris, C., Floudas, A.: Tight convex underestimators for $C^2$-continuous problems. I. Univariate functions. J. Global Optim. 42 (1) (2008). | MR
[13] Grosan, C., Abraham, A.: On a class of global optimization test functions. Neural Network World, http://falklands.globat.com/~softcomputing.net/nnw2009.pdf
[14] Guettal, D., Ziadi, A.: Reducing transformation and global optimization. Appl. Math. Comput. 218 (2012), 5848–5860. | MR | Zbl
[15] Guillez, A.: Alienor, fractal algorithm for multivariable minimization problems. Math. Comput. Modelling 14 (1990), 245–247. | DOI | Zbl
[16] Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht, 1995. | MR | Zbl
[17] Kvasov, D.E, Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3 (2) (2009), 303–318. | DOI | MR | Zbl
[18] Le Thi, H.A., Ouanes, M.: Convex quadratic underestimation and branch and bound for univariate global optimization with one nonconvex constraint. RAIRO Oper. Res. 40 (2006), 285–302. | DOI | MR | Zbl
[19] Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23 (1) (2013), 508–529. | DOI | MR | Zbl
[20] Leslous, F., Marthon, P., Oukacha, B., Ouanes, M.: Nonconvex optimization based on DC programming and DCA in the search of a global optimum of a nonconvex function. J. Egyptian Math. Soc. (2015). DOI: | DOI
[21] Noui, A., Aaid, D., Ouanes, M.: An efficient algorithm for the Bernstein polynomial approach to global optimization. JSLAROMAD II, Tiziouzou, Algeria, 2013, 28–30 Octobre 2013.
[22] Ouanes, M.: A combined descent gradient method and descritization method for convex SIP. Internat. J. Appl. Math. 25 (4) (2012), 503–513. | MR
[23] Ouanes, M.: A new approach for nonconvex SIP. Internat. J. Appl. Math. 81 (3) (2012), 479–486. | Zbl
[24] Ouanes, M.: The main diagonal method in C 1 global optimization problem. Internat. J. Appl. Math. 25 (5) (2012), 663–672. | MR | Zbl
[25] Ouanes, M.: New underestimator for multivariate global optimization with box costraints. Internat. J. of Pure and Appl. Math. 84 (1) (2013), 73–83. | DOI
[26] Ouanes, M., Le Thi, H.A., Trong, P.N., Zidna, A.: New quadratic lower bound for multivariate functions in global optimization. Math. Comput. Simulation 109 (2015), 197–211. | DOI | MR
[27] Pardalos, P.M., Romeijn, H.E.: Handbook of Global Optimization, Volume 2. Nonconvex Optimization and Its Applications. Springer, Boston–Dordrecht–London, 2002. | MR
[28] Piyavskii, S.A.: An algorithm for finding the absolute extremum of a function. USSR Computational Mathematics and Mathematical Physics 12 (4) (1972), 57–67. | DOI | MR
[29] Rahal, M., Ziadi, A.: A new extention of Piyavski’s method to holder functions of sveral variables. Appl. Math. Comput. 218 (2012), 478–488. | MR
[30] Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35 (5) (1995), 705–717. | MR
[31] Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Programming 81 (1), Ser. A (1998), 127–146. | DOI | MR | Zbl
[32] Shpak, A.: Global optimization in one-dimensional case using analytically defined derivatives of objective function. Comput. Sci. J. Moldova 3 (8) (1995), 168–184. | MR | Zbl
Cité par Sources :