A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$
Archivum mathematicum, Tome 53 (2017) no. 1, pp. 13-18 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having $4n+6$ vertices and automorphism group cyclic of order $4n$, $n\ge 1$. As a special case we get graphs with $2^k+6$ vertices and cyclic automorphism groups of order $2^k$. It can revive interest in related problems.
The problem of finding minimal vertex number of graphs with a given automorphism group is addressed in this article for the case of cyclic groups. This problem was considered earlier by other authors. We give a construction of an undirected graph having $4n+6$ vertices and automorphism group cyclic of order $4n$, $n\ge 1$. As a special case we get graphs with $2^k+6$ vertices and cyclic automorphism groups of order $2^k$. It can revive interest in related problems.
DOI : 10.5817/AM2017-1-13
Classification : 05C25, 05C35, 05C75, 05E18
Keywords: graph; automorphism group
@article{10_5817_AM2017_1_13,
     author = {Daugulis, Peteris},
     title = {A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$},
     journal = {Archivum mathematicum},
     pages = {13--18},
     year = {2017},
     volume = {53},
     number = {1},
     doi = {10.5817/AM2017-1-13},
     mrnumber = {3636678},
     zbl = {06738495},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-13/}
}
TY  - JOUR
AU  - Daugulis, Peteris
TI  - A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$
JO  - Archivum mathematicum
PY  - 2017
SP  - 13
EP  - 18
VL  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-13/
DO  - 10.5817/AM2017-1-13
LA  - en
ID  - 10_5817_AM2017_1_13
ER  - 
%0 Journal Article
%A Daugulis, Peteris
%T A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$
%J Archivum mathematicum
%D 2017
%P 13-18
%V 53
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2017-1-13/
%R 10.5817/AM2017-1-13
%G en
%F 10_5817_AM2017_1_13
Daugulis, Peteris. A note on another construction of graphs with $4n+6$ vertices and cyclic automorphism group of order $4n$. Archivum mathematicum, Tome 53 (2017) no. 1, pp. 13-18. doi: 10.5817/AM2017-1-13

[1] Arlinghaus, W.C.: The classification of minimal graphs with given abelian automorphism group. Mem. Amer. Math. Soc. 57 (1985), no. 330, viii+86 pp. | MR | Zbl

[2] Babai, L.: On the minimum order of graphs with given group. Canad. Math. Bull. 17 (1974), 467–470. | DOI | MR | Zbl

[3] Babai, L.: In Graham R.L.; Grotschel M.; Lovasz L., Handbook of Combinatorics I. n Graham R.L.; Grotschel M.; Lovasz L., Handbook of Combinatorics I, ch. Automorphism groups, isomorphism, reconstruction, pp. 1447–1540, North-Holland, 1995. | MR

[4] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. | DOI | MR | Zbl

[5] Bouwer, I.Z., Frucht, R.: In Jagdish N. Srivastava, A survey of combinatorial the. Jagdish N. Srivastava, A survey of combinatorial the, ch. Line-minimal graphs with cyclic group, pp. 53–69, North-Holland, 1973.

[6] Daugulis, P.: $10$-vertex graphs with cyclic automorphism group of order $4$. 2014, | arXiv

[7] Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Heidelberg, 2010. | Zbl

[8] Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compositio Math. (in German) 6 (1939), 239–250. | MR

[9] Harary, F.: Graph Theory. Addison-Wesley, Reading, MA, 1969. | MR | Zbl

[10] McKay, B.D., Piperno, A.: Practical Graph Isomorphism, II. J. Symbolic Comput. 60 (2013), 94–112. | DOI | MR

[11] Sabidussi, G.: On the minimum order of graphs with given automorphism group. Monatsh. Math. 63 (2) (1959), 124–127. | DOI | MR | Zbl

Cité par Sources :