Keywords: pseudo-Riemannian spin manifolds; Killing type equations; cone construction; spinor-valued differential forms
@article{10_5817_AM2016_5_341,
author = {Somberg, Petr and Zima, Petr},
title = {Killing spinor-valued forms and the cone construction},
journal = {Archivum mathematicum},
pages = {341--355},
year = {2016},
volume = {52},
number = {5},
doi = {10.5817/AM2016-5-341},
mrnumber = {3610868},
zbl = {06674909},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-341/}
}
TY - JOUR AU - Somberg, Petr AU - Zima, Petr TI - Killing spinor-valued forms and the cone construction JO - Archivum mathematicum PY - 2016 SP - 341 EP - 355 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-341/ DO - 10.5817/AM2016-5-341 LA - en ID - 10_5817_AM2016_5_341 ER -
Somberg, Petr; Zima, Petr. Killing spinor-valued forms and the cone construction. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 341-355. doi: 10.5817/AM2016-5-341
[1] Bär, C.: Real Killing spinors and holonomy. Communications in Mathematical Physics 154 (1993), 509–521. | DOI | MR | Zbl
[2] Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing spinors on Riemannian manifolds. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], B. G. Teubner Verlagsgesellschaft, 1991. | MR | Zbl
[3] Berger, M.: Sur les groupes d’holonomie homogènes de variétés à connexion affine et des variétés riemanniennes. Bulletin de la Société Mathématique de France 83 (1955), 279–308. | MR | Zbl
[4] Bohle, C.: Killing spinors on Lorentzian manifolds. J. Geom. Phys. 45 (3–4) (2003), 285–308. | DOI | MR | Zbl
[5] Duff, M.J., Nilsson, B.E.W., Pope, C.N.: Kaluza-Klein supergravity. Physics Reports. A Review Section of Physics Letters, vol. 130 (1–2), 1986, pp. 1–142. | MR
[6] Duff, M.J., Pope, C.N.: Kaluza-Klein Supergravity and the Seven Sphere. Supersymmetry and Supergravity '82, Proceedings of the Trieste September 1982 School, World Scientific Press, 1983. | MR
[7] Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97 (1) (1980), 117–146. | DOI | MR | Zbl
[8] Friedrich, T.: On the conformal relation between twistors and Killing spinors. Proceedings of the Winter School “Geometry and Physics”, vol. 22 (2), Circolo Matematico di Palermo, 1990, pp. 59–75. | MR | Zbl
[9] Semmelmann, U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245 (2003), 503–527. | DOI | MR | Zbl
[10] Simons, J.: On the transitivity of holonomy systems. Ann. of Math. (2) 76 (2) (1962), 213–234. | DOI | MR | Zbl
[11] Slupinski, M.J.: A Hodge type decomposition for spinor valued forms. Ann. Sci. École Norm. Sup. (4) 29 (1996), 23–48. | DOI | MR | Zbl
[12] Somberg, P.: Killing tensor spinor forms and their application in Riemannian geometry. Hypercomplex analysis and applications, Trends in Mathematics, Birkhauser, 2011, pp. 233–247. | MR | Zbl
[13] Stein, E.M., Weiss, G.: Generalization of the Cauchy-Riemann equations and representations of the rotation group. Amer. J. Math. 90 (1968), 163–196. | DOI | MR | Zbl
[14] Tachibana, S.-I., Yu, W.N.: On a Riemannian space admitting more than one Sasakian structures. Tohoku Math. J. (2) 22 (4) (1970), 536–540. | DOI | MR | Zbl
[15] Walker, M., Penrose, R.: On quadratic first integrals of the geodesic equations for type $\lbrace 22\rbrace $ spacetimes. Comm. Math. Phys. 18 (1970), 265–274. | DOI | MR
[16] Yano, K.: Some remarks on tensor fields and curvature. Ann. of Math. (2) 55 (1952), 328–347. | DOI | MR | Zbl
[17] Zima, P.: (Conformal) Killing spinor valued forms on Riemannian manifolds. Thesis, Charles University in Prague (2014), Available online at: https://is.cuni.cz/webapps/zzp/detail/121806
Cité par Sources :