On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures
Archivum mathematicum, Tome 52 (2016) no. 5, pp. 325-339 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds. The almost-cosymplectic-contact structure admits on the sheaf of pairs of 1-forms and functions the structure of a Lie algebra. We describe Lie subalgebras in this Lie algebra given by pairs generating infinitesimal symmetries of basic tensor fields given by the almost-cosymplectic-contact structure.
We study Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds. The almost-cosymplectic-contact structure admits on the sheaf of pairs of 1-forms and functions the structure of a Lie algebra. We describe Lie subalgebras in this Lie algebra given by pairs generating infinitesimal symmetries of basic tensor fields given by the almost-cosymplectic-contact structure.
DOI : 10.5817/AM2016-5-325
Classification : 53C15
Keywords: almost-cosymplectic-contact structure; almost-coPoisson-Jacobi structure; infinitesimal symmetry; Lie algebra
@article{10_5817_AM2016_5_325,
     author = {Jany\v{s}ka, Josef},
     title = {On {Lie} algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures},
     journal = {Archivum mathematicum},
     pages = {325--339},
     year = {2016},
     volume = {52},
     number = {5},
     doi = {10.5817/AM2016-5-325},
     mrnumber = {3610867},
     zbl = {06674908},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-325/}
}
TY  - JOUR
AU  - Janyška, Josef
TI  - On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures
JO  - Archivum mathematicum
PY  - 2016
SP  - 325
EP  - 339
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-325/
DO  - 10.5817/AM2016-5-325
LA  - en
ID  - 10_5817_AM2016_5_325
ER  - 
%0 Journal Article
%A Janyška, Josef
%T On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures
%J Archivum mathematicum
%D 2016
%P 325-339
%V 52
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-325/
%R 10.5817/AM2016-5-325
%G en
%F 10_5817_AM2016_5_325
Janyška, Josef. On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 325-339. doi: 10.5817/AM2016-5-325

[1] de Leon, M., Tuynman, G.M: A universal model for cosymplectic manifolds. J. Geom. Phys. 20 (1996), 77–86. | DOI | MR | Zbl

[2] Janyška, J.: Remarks on local Lie algebras of pairs of functions. preprint 2016, arXiv: 1610.08706v1.

[3] Janyška, J.: Relations between constants of motion and conserved functions. Arch. Math.(Brno) 51 (2015), 297–313. DOI:  | DOI | MR | Zbl

[4] Janyška, J., Modugno, M.: Geometric Structures of the Classical General Relativistic Phase Space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. | DOI | MR | Zbl

[5] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. (9) 91 (2009), 211–232. | DOI | MR | Zbl

[6] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A: Math. Theor. 45 (2012), 485205. | DOI | MR | Zbl

[7] Kirillov, A.A.: Local Lie algebras. Russian Math. Surveys 31 (1976), 55–76. | DOI | MR | Zbl

[8] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer, 1993. | MR

[9] Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl. (9) 57 (1978), 453–488. | MR | Zbl

[10] Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society, Lecture Note Series, vol. 213, Cambridge University Press, 2005. | MR | Zbl

[11] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Birkhäuser Verlag, Basel–Boston–Berlin, 1994. | MR | Zbl

Cité par Sources :