Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic Dirac operator
Archivum mathematicum, Tome 52 (2016) no. 5, pp. 313-324 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is ${\widetilde{}}(3,)$.
Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is ${\widetilde{}}(3,)$.
DOI : 10.5817/AM2016-5-313
Classification : 53C30, 53D05, 81R25
Keywords: projective structure; Segal-Shale-Weil representation; generalized Verma modules; symplectic Dirac operator; $(3, )$
@article{10_5817_AM2016_5_313,
     author = {Hol{\'\i}kov\'a, Marie and K\v{r}i\v{z}ka, Libor and Somberg, Petr},
     title = {Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic {Dirac} operator},
     journal = {Archivum mathematicum},
     pages = {313--324},
     year = {2016},
     volume = {52},
     number = {5},
     doi = {10.5817/AM2016-5-313},
     mrnumber = {3610866},
     zbl = {06674907},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-313/}
}
TY  - JOUR
AU  - Holíková, Marie
AU  - Křižka, Libor
AU  - Somberg, Petr
TI  - Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic Dirac operator
JO  - Archivum mathematicum
PY  - 2016
SP  - 313
EP  - 324
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-313/
DO  - 10.5817/AM2016-5-313
LA  - en
ID  - 10_5817_AM2016_5_313
ER  - 
%0 Journal Article
%A Holíková, Marie
%A Křižka, Libor
%A Somberg, Petr
%T Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic Dirac operator
%J Archivum mathematicum
%D 2016
%P 313-324
%V 52
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-313/
%R 10.5817/AM2016-5-313
%G en
%F 10_5817_AM2016_5_313
Holíková, Marie; Křižka, Libor; Somberg, Petr. Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic Dirac operator. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 313-324. doi: 10.5817/AM2016-5-313

[1] Collingwood, D.H., Shelton, B.: A duality theorem for extensions of induced highest weight modules. Pacific J. Math. 146 (2) (1990), 227–237. | DOI | MR | Zbl

[2] De Bie, H., Holíková, M., Somberg, P.: Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator. arXiv:1511.04189, 2015.

[3] De Bie, H., Somberg, P., Souček, V.: The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator. J. Geom. Phys. 75 (2014), 120–128. | DOI | MR | Zbl

[4] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. | DOI | MR | Zbl

[5] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285 (2015), 1796–1852. | DOI | MR | Zbl

[6] Kostant, B.: Symplectic spinors. Symposia Mathematica, Progress in Mathematics, vol. XIV, Academic Press, London, 1974, pp. 139–152. | MR | Zbl

[7] Kostant, B.: Verma modules and the existence of quasi-invariant differential operators, Non-Commutative Harmonic Analysis. Lecture Notes in Math., vol. 466, Springer, Berlin, 1975, pp. 101–128. | MR

[8] Křižka, L., Somberg, P.: Algebraic analysis of scalar generalized Verma modules of Heisenberg parabolic type I.: $A_n$-series. arXiv:1502.07095, to appear in Transformation Groups, 2015. | MR

[9] Křižka, L., Somberg, P.: Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type II.: $C_n, D_n$-series. (in preparation).

[10] Ørsted, B.: Generalized gradients and Poisson transforms. Global analysis and harmonic analysis, Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 235–249. | MR | Zbl

[11] Somberg, P., Šilhan, J.: Higher symmetries of the symplectic Dirac operator. (in preparation).

[12] Torasso, P.: Quantification géométrique, opérateurs d’entrelacement et représentations unitaires de ${\widetilde{SL}}_3(\mathbb{R})$. Acta Math. 150 (1) (1983), 153–242. | DOI | MR

[13] Wolf, J.A.: Unitary representations of maximal parabolic subgroups of the classical groups. Mem. Amer. Math. Soc., vol. 8, American Mathematical Society, Providence, 1976. | MR | Zbl

Cité par Sources :