Keywords: projective structure; Segal-Shale-Weil representation; generalized Verma modules; symplectic Dirac operator; $(3, )$
@article{10_5817_AM2016_5_313,
author = {Hol{\'\i}kov\'a, Marie and K\v{r}i\v{z}ka, Libor and Somberg, Petr},
title = {Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic {Dirac} operator},
journal = {Archivum mathematicum},
pages = {313--324},
year = {2016},
volume = {52},
number = {5},
doi = {10.5817/AM2016-5-313},
mrnumber = {3610866},
zbl = {06674907},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-313/}
}
TY - JOUR
AU - Holíková, Marie
AU - Křižka, Libor
AU - Somberg, Petr
TI - Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic Dirac operator
JO - Archivum mathematicum
PY - 2016
SP - 313
EP - 324
VL - 52
IS - 5
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-313/
DO - 10.5817/AM2016-5-313
LA - en
ID - 10_5817_AM2016_5_313
ER -
%0 Journal Article
%A Holíková, Marie
%A Křižka, Libor
%A Somberg, Petr
%T Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic Dirac operator
%J Archivum mathematicum
%D 2016
%P 313-324
%V 52
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-313/
%R 10.5817/AM2016-5-313
%G en
%F 10_5817_AM2016_5_313
Holíková, Marie; Křižka, Libor; Somberg, Petr. Projective structure, $\widetilde{\operatorname{SL}}(3,\mathbb{R})$ and the symplectic Dirac operator. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 313-324. doi: 10.5817/AM2016-5-313
[1] Collingwood, D.H., Shelton, B.: A duality theorem for extensions of induced highest weight modules. Pacific J. Math. 146 (2) (1990), 227–237. | DOI | MR | Zbl
[2] De Bie, H., Holíková, M., Somberg, P.: Basic aspects of symplectic Clifford analysis for the symplectic Dirac operator. arXiv:1511.04189, 2015.
[3] De Bie, H., Somberg, P., Souček, V.: The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator. J. Geom. Phys. 75 (2014), 120–128. | DOI | MR | Zbl
[4] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. | DOI | MR | Zbl
[5] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285 (2015), 1796–1852. | DOI | MR | Zbl
[6] Kostant, B.: Symplectic spinors. Symposia Mathematica, Progress in Mathematics, vol. XIV, Academic Press, London, 1974, pp. 139–152. | MR | Zbl
[7] Kostant, B.: Verma modules and the existence of quasi-invariant differential operators, Non-Commutative Harmonic Analysis. Lecture Notes in Math., vol. 466, Springer, Berlin, 1975, pp. 101–128. | MR
[8] Křižka, L., Somberg, P.: Algebraic analysis of scalar generalized Verma modules of Heisenberg parabolic type I.: $A_n$-series. arXiv:1502.07095, to appear in Transformation Groups, 2015. | MR
[9] Křižka, L., Somberg, P.: Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type II.: $C_n, D_n$-series. (in preparation).
[10] Ørsted, B.: Generalized gradients and Poisson transforms. Global analysis and harmonic analysis, Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 235–249. | MR | Zbl
[11] Somberg, P., Šilhan, J.: Higher symmetries of the symplectic Dirac operator. (in preparation).
[12] Torasso, P.: Quantification géométrique, opérateurs d’entrelacement et représentations unitaires de ${\widetilde{SL}}_3(\mathbb{R})$. Acta Math. 150 (1) (1983), 153–242. | DOI | MR
[13] Wolf, J.A.: Unitary representations of maximal parabolic subgroups of the classical groups. Mem. Amer. Math. Soc., vol. 8, American Mathematical Society, Providence, 1976. | MR | Zbl
Cité par Sources :