A canonical connection on sub-Riemannian contact manifolds
Archivum mathematicum, Tome 52 (2016) no. 5, pp. 277-289
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
DOI :
10.5817/AM2016-5-277
Classification :
53C17, 53D10, 70G45
Keywords: contact manifold; sub-Riemannian geometry; partial connection; pseudo-Hermitian geometry
Keywords: contact manifold; sub-Riemannian geometry; partial connection; pseudo-Hermitian geometry
@article{10_5817_AM2016_5_277,
author = {Eastwood, Michael and Neusser, Katharina},
title = {A canonical connection on {sub-Riemannian} contact manifolds},
journal = {Archivum mathematicum},
pages = {277--289},
year = {2016},
volume = {52},
number = {5},
doi = {10.5817/AM2016-5-277},
mrnumber = {3610863},
zbl = {06674904},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/}
}
TY - JOUR AU - Eastwood, Michael AU - Neusser, Katharina TI - A canonical connection on sub-Riemannian contact manifolds JO - Archivum mathematicum PY - 2016 SP - 277 EP - 289 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/ DO - 10.5817/AM2016-5-277 LA - en ID - 10_5817_AM2016_5_277 ER -
Eastwood, Michael; Neusser, Katharina. A canonical connection on sub-Riemannian contact manifolds. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 277-289. doi: 10.5817/AM2016-5-277
Cité par Sources :