Keywords: contact manifold; sub-Riemannian geometry; partial connection; pseudo-Hermitian geometry
@article{10_5817_AM2016_5_277,
author = {Eastwood, Michael and Neusser, Katharina},
title = {A canonical connection on {sub-Riemannian} contact manifolds},
journal = {Archivum mathematicum},
pages = {277--289},
year = {2016},
volume = {52},
number = {5},
doi = {10.5817/AM2016-5-277},
mrnumber = {3610863},
zbl = {06674904},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/}
}
TY - JOUR AU - Eastwood, Michael AU - Neusser, Katharina TI - A canonical connection on sub-Riemannian contact manifolds JO - Archivum mathematicum PY - 2016 SP - 277 EP - 289 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/ DO - 10.5817/AM2016-5-277 LA - en ID - 10_5817_AM2016_5_277 ER -
Eastwood, Michael; Neusser, Katharina. A canonical connection on sub-Riemannian contact manifolds. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 277-289. doi: 10.5817/AM2016-5-277
[1] Agrachev, A.A., Barilari, D., Rizzi, L.: Sub-Riemannian curvature in contact geometry. to appear in J. Geom. Anal.
[2] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves I. J. Dynam. Control Systems 8 (1) (2002), 93–140. | DOI | MR | Zbl
[3] Barilari, D., Rizzi, L.: On Jacobi fields and canonical connection in sub-Riemannian geometry. arXiv:1506.01827.
[4] Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K.: Some differential complexes within and beyond parabolic geometry. arXiv:1112.2142.
[5] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Surveys and Monographs, vol. 154, Amer. Math. Soc., 2009. | DOI | MR | Zbl
[6] Eastwood, M.G., Gover, A.R.: Prolongation on contact manifolds. Indiana Univ. Math. J. 60 (2011), 1425–1486. | DOI | MR
[7] Falbel, E., Gorodski, C., Veloso, J.M.: Conformal sub-Riemannian geometry in dimension 3. Mat. Contemp. 9 (1995), 61–73. | MR | Zbl
[8] Morimoto, T.: Cartan connection associated with a subriemannian structure. Differential Geom. Appl. 26 (2008), 75–78. | DOI | MR | Zbl
[9] Rumin, M.: Un complexe de formes différentielles sur les variétés de contact. Comptes Rendus Acad. Sci. Paris Math. 310 (1990), 401–404. | MR | Zbl
[10] Tanaka, N.: A differential geometric study on strongly pseudo-convex manifolds. Lectures in Mathematics, Kyoto University, Kinokuniya, 1975. | MR | Zbl
[11] Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25–41. | DOI | MR | Zbl
[12] Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differential Geom. Appl. 27 (2009), 723–742. | DOI | MR | Zbl
Cité par Sources :