A canonical connection on sub-Riemannian contact manifolds
Archivum mathematicum, Tome 52 (2016) no. 5, pp. 277-289.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
DOI : 10.5817/AM2016-5-277
Classification : 53C17, 53D10, 70G45
Keywords: contact manifold; sub-Riemannian geometry; partial connection; pseudo-Hermitian geometry
@article{10_5817_AM2016_5_277,
     author = {Eastwood, Michael and Neusser, Katharina},
     title = {A canonical connection on {sub-Riemannian} contact manifolds},
     journal = {Archivum mathematicum},
     pages = {277--289},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2016},
     doi = {10.5817/AM2016-5-277},
     mrnumber = {3610863},
     zbl = {06674904},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/}
}
TY  - JOUR
AU  - Eastwood, Michael
AU  - Neusser, Katharina
TI  - A canonical connection on sub-Riemannian contact manifolds
JO  - Archivum mathematicum
PY  - 2016
SP  - 277
EP  - 289
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/
DO  - 10.5817/AM2016-5-277
LA  - en
ID  - 10_5817_AM2016_5_277
ER  - 
%0 Journal Article
%A Eastwood, Michael
%A Neusser, Katharina
%T A canonical connection on sub-Riemannian contact manifolds
%J Archivum mathematicum
%D 2016
%P 277-289
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/
%R 10.5817/AM2016-5-277
%G en
%F 10_5817_AM2016_5_277
Eastwood, Michael; Neusser, Katharina. A canonical connection on sub-Riemannian contact manifolds. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 277-289. doi : 10.5817/AM2016-5-277. http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/

Cité par Sources :