A canonical connection on sub-Riemannian contact manifolds
Archivum mathematicum, Tome 52 (2016) no. 5, pp. 277-289 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
DOI : 10.5817/AM2016-5-277
Classification : 53C17, 53D10, 70G45
Keywords: contact manifold; sub-Riemannian geometry; partial connection; pseudo-Hermitian geometry
@article{10_5817_AM2016_5_277,
     author = {Eastwood, Michael and Neusser, Katharina},
     title = {A canonical connection on {sub-Riemannian} contact manifolds},
     journal = {Archivum mathematicum},
     pages = {277--289},
     year = {2016},
     volume = {52},
     number = {5},
     doi = {10.5817/AM2016-5-277},
     mrnumber = {3610863},
     zbl = {06674904},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/}
}
TY  - JOUR
AU  - Eastwood, Michael
AU  - Neusser, Katharina
TI  - A canonical connection on sub-Riemannian contact manifolds
JO  - Archivum mathematicum
PY  - 2016
SP  - 277
EP  - 289
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/
DO  - 10.5817/AM2016-5-277
LA  - en
ID  - 10_5817_AM2016_5_277
ER  - 
%0 Journal Article
%A Eastwood, Michael
%A Neusser, Katharina
%T A canonical connection on sub-Riemannian contact manifolds
%J Archivum mathematicum
%D 2016
%P 277-289
%V 52
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-5-277/
%R 10.5817/AM2016-5-277
%G en
%F 10_5817_AM2016_5_277
Eastwood, Michael; Neusser, Katharina. A canonical connection on sub-Riemannian contact manifolds. Archivum mathematicum, Tome 52 (2016) no. 5, pp. 277-289. doi: 10.5817/AM2016-5-277

[1] Agrachev, A.A., Barilari, D., Rizzi, L.: Sub-Riemannian curvature in contact geometry. to appear in J. Geom. Anal.

[2] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves I. J. Dynam. Control Systems 8 (1) (2002), 93–140. | DOI | MR | Zbl

[3] Barilari, D., Rizzi, L.: On Jacobi fields and canonical connection in sub-Riemannian geometry. arXiv:1506.01827.

[4] Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K.: Some differential complexes within and beyond parabolic geometry. arXiv:1112.2142.

[5] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Surveys and Monographs, vol. 154, Amer. Math. Soc., 2009. | DOI | MR | Zbl

[6] Eastwood, M.G., Gover, A.R.: Prolongation on contact manifolds. Indiana Univ. Math. J. 60 (2011), 1425–1486. | DOI | MR

[7] Falbel, E., Gorodski, C., Veloso, J.M.: Conformal sub-Riemannian geometry in dimension 3. Mat. Contemp. 9 (1995), 61–73. | MR | Zbl

[8] Morimoto, T.: Cartan connection associated with a subriemannian structure. Differential Geom. Appl. 26 (2008), 75–78. | DOI | MR | Zbl

[9] Rumin, M.: Un complexe de formes différentielles sur les variétés de contact. Comptes Rendus Acad. Sci. Paris Math. 310 (1990), 401–404. | MR | Zbl

[10] Tanaka, N.: A differential geometric study on strongly pseudo-convex manifolds. Lectures in Mathematics, Kyoto University, Kinokuniya, 1975. | MR | Zbl

[11] Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25–41. | DOI | MR | Zbl

[12] Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differential Geom. Appl. 27 (2009), 723–742. | DOI | MR | Zbl

Cité par Sources :