Initial value problems for fractional functional differential inclusions with Hadamard type derivative
Archivum mathematicum, Tome 52 (2016) no. 4, pp. 263-273 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish sufficient conditions for the existence of solutions of a class of fractional functional differential inclusions involving the Hadamard fractional derivative with order $\alpha \in (0,1]$. Both cases of convex and nonconvex valued right hand side are considered.
We establish sufficient conditions for the existence of solutions of a class of fractional functional differential inclusions involving the Hadamard fractional derivative with order $\alpha \in (0,1]$. Both cases of convex and nonconvex valued right hand side are considered.
DOI : 10.5817/AM2016-4-263
Classification : 26A33, 34A60
Keywords: fractional differential inclusion; Hadamard-type fractional derivative; fractional integral; fixed point; convex
@article{10_5817_AM2016_4_263,
     author = {Guerraiche, Nassim and Hamani, Samira and Henderson, Johnny},
     title = {Initial value problems for fractional functional differential inclusions with {Hadamard} type derivative},
     journal = {Archivum mathematicum},
     pages = {263--273},
     year = {2016},
     volume = {52},
     number = {4},
     doi = {10.5817/AM2016-4-263},
     mrnumber = {3610653},
     zbl = {06674903},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-263/}
}
TY  - JOUR
AU  - Guerraiche, Nassim
AU  - Hamani, Samira
AU  - Henderson, Johnny
TI  - Initial value problems for fractional functional differential inclusions with Hadamard type derivative
JO  - Archivum mathematicum
PY  - 2016
SP  - 263
EP  - 273
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-263/
DO  - 10.5817/AM2016-4-263
LA  - en
ID  - 10_5817_AM2016_4_263
ER  - 
%0 Journal Article
%A Guerraiche, Nassim
%A Hamani, Samira
%A Henderson, Johnny
%T Initial value problems for fractional functional differential inclusions with Hadamard type derivative
%J Archivum mathematicum
%D 2016
%P 263-273
%V 52
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-263/
%R 10.5817/AM2016-4-263
%G en
%F 10_5817_AM2016_4_263
Guerraiche, Nassim; Hamani, Samira; Henderson, Johnny. Initial value problems for fractional functional differential inclusions with Hadamard type derivative. Archivum mathematicum, Tome 52 (2016) no. 4, pp. 263-273. doi: 10.5817/AM2016-4-263

[1] Agarwal, R.P, Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (3) (2010), 973–1033. | DOI | MR

[2] Ahmed, B., Ntouyas, S.K.: Initial value problems for hybrid Hadamard fractional equations. EJDE 2014 (161) (2014), 1–8. | MR

[3] Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, New York, 1984. | MR | Zbl

[4] Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston, 1990. | MR | Zbl

[5] Benchohra, M., Djebali, S., Hamani, S.: Boundary value problems of differential inclusions with Riemann-Liouville fractional derivative. Nonlinear Oscillation 14 (1) (2011), 7–20. | DOI | MR

[6] Benchohra, M., Hamani, S.: Boundary value problems for differential inclusions with fractional order. Diss. Math. Diff. Inclusions. Control and Optimization 28 (2008), 147–164. | DOI | MR | Zbl

[7] Benchohra, M., Hamani, S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Meth. Nonlinear Anal. 32 (1) (2008), 115–130. | MR | Zbl

[8] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–86. | DOI | MR | Zbl

[9] Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii-Schaefer type. Math. Nachr. 189 (1998), 23–31. | DOI | MR | Zbl

[10] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Composition of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269 (2002), 387–400. | DOI | MR

[11] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269 (2002), 1–27. | DOI | MR | Zbl

[12] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270 (2002), 1–15. | DOI | MR | Zbl

[13] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | DOI | MR | Zbl

[14] Covitz, H., Nadler, Jr., S.B.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | DOI | MR

[15] Deimling, K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992. | MR | Zbl

[16] Delbosco, D., Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204 (1996), 609–625. | DOI | MR | Zbl

[17] Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229–248. | DOI | MR | Zbl

[18] Fryszkowski, A.: Continuous selections for a class of nonconvex multivalued maps. Studia Math. 76 (1983), 163–174. | DOI | MR

[19] Fryszkowski, A.: Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications. vol. 2, Kluwer Academic Publishers, Dordrecht, 2004. | MR

[20] Hadamard, J.: Essai sur l’etude des fonctions donnees par leur development de Taylor. J. Math. Pure Appl. 8 (1892), 101–186.

[21] Hamani, S., Benchohra, M., Graef, J.R.: Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions. EJDE 2010 No. 20 (2010), 1–16. | MR | Zbl

[22] Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (5) (2006), 765–772. | DOI | MR

[23] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. | MR | Zbl

[24] Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. EJQTDE 2007 (3) (2007), 11pp. | MR

[25] Kilbas, A.A., Marzan, S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equ. 41 (2005), 84–89. | DOI | MR | Zbl

[26] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl

[27] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York, 1993. | MR

[28] Momani, S.M., Hadid, S.B., Alawenh, Z.M.: Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004 (2004), 697–701. | DOI | MR | Zbl

[29] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | MR | Zbl

[30] Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Appl. Anal. 5 (2002), 367–386. | MR | Zbl

[31] Thiramanus, P., Ntouyas, S.K., Tariboon, J.: Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions. Abstr. Appl. Anal. (2014), Art ID 902054, 9 pp. | MR

[32] Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. EJDE (2006), no. 36, 1–12. | MR | Zbl

Cité par Sources :