Keywords: totally geodesic; parallel; hypersurface; solvable Lie group
@article{10_5817_AM2016_4_221,
author = {Nasehi, Mehri},
title = {Parallel and totally geodesic hypersurfaces of solvable {Lie} groups},
journal = {Archivum mathematicum},
pages = {221--231},
year = {2016},
volume = {52},
number = {4},
doi = {10.5817/AM2016-4-221},
mrnumber = {3610651},
zbl = {06674901},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-221/}
}
Nasehi, Mehri. Parallel and totally geodesic hypersurfaces of solvable Lie groups. Archivum mathematicum, Tome 52 (2016) no. 4, pp. 221-231. doi: 10.5817/AM2016-4-221
[1] Aghasi, M., Nasehi, M.: Some geometrical properties of a five-dimensional solvable Lie group. Differ. Geom. Dyn. Syst. 15 (2013), 1–12. | MR | Zbl
[2] Aghasi, M., Nasehi, M.: On homogeneous Randers spaces with Douglas or naturally reductive metrics. Differ. Geom. Dyn. Syst. 17 (2015), 1–12. | MR | Zbl
[3] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups. Adv. Geom. 15 (4) (2015), 507–517. | DOI | MR | Zbl
[4] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi Cartan Vranceanu spaces. PDE's, Submanifolds and affine differential geometry, vol. 57, Banach Centre Publishing, Polish Academy Sciences, Warsaw, 2002, pp. 67–87. | MR | Zbl
[5] Božek, M.: Existence of generalized symmetric Riemannian spaces with solvable isometry group. Časopis pěest. mat. 105 (1980), 368–384. | MR | Zbl
[6] Calvaruso, G., Kowalski, O., Marinosci, R.: Homogeneous geodesics in solvable Lie groups. Acta Math. Hungar. 101 (2003), 313–322. | DOI | MR | Zbl
[7] Calvaruso, G., Van der Veken, J., : Lorentzian symmetric three-spaces and the classification of their parallel surfaces. Internat. J. Math. 20 (2009), 1185–1205. | DOI | MR | Zbl
[8] Calvaruso, G., Van der Veken, J., : Parallel surfaces in three-dimensional Lorentzian Lie groups. Taiwanese J. Math. 14 (2010), 223–250. | DOI | MR | Zbl
[9] Calvaruso, G., Van der Veken, J., : Totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups. Results Math. 64 (2013), 135–153. | DOI | MR | Zbl
[10] Chen, B.-Y.: Complete classification of parallel spatial surfaces in pseudo-Riemannian space forms with arbitrary index and dimension. J. Geom. Phys. 60 (2010), 260–280. | DOI | MR | Zbl
[11] Chen, B.-Y., Van der Veken, J., : Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms. Tohoku Math. J. 61 (2009), 1–40. | DOI | MR | Zbl
[12] De Leo, B., Van der Veken, J., : Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces. Geom. Dedicata 159 (2012), 373–387. | DOI | MR | Zbl
[13] Dillen, F., Van der Veken, J., : Higher order parallel surfaces in the Heisenberg group. Differential Geom. Appl. 26 (1) (2008), 1–8. | DOI | MR | Zbl
[14] Inoguchi, J., Van der Veken, J., : Parallel surfaces in the motion groups E(1, 1) and E(2). Bull. Belg. Math. Soc. Simon Stevin. 14 (2007), 321–332. | MR | Zbl
[15] Inoguchi, J., Van der Veken, J., : A complete classification of parallel surfaces in three-dimensional homogeneous spaces. Geom. Dedicata 131 (2008), 159–172. | DOI | MR | Zbl
[16] Kowalski, O.: Generalized Symmetric Spaces. Lecture Notes in Math., vol. 805, Springer-Verlag, Berlin, Heidelberg, New York, 1980. | MR | Zbl
[17] Lawson, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2) 89 (1969), 187–197. | DOI | MR | Zbl
[18] Nasehi, M.: Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds. Czechoslovak Math. J. 66 (2) (2016), 547–559. | DOI | MR
[19] Simon, U., Weinstein, A.: Anwendungen der De Rhamschen Zerlegung auf Probleme der lokalen Flächentheorie. Manuscripta Math. 1 (1969), 139–146. | DOI | MR | Zbl
Cité par Sources :