Keywords: gradient estimates; general heat equation; Laplacian comparison theorem; $V$-Bochner-Weitzenböck; Bakry-Emery Ricci curvature
@article{10_5817_AM2016_4_207,
author = {Khanh, Nguyen Ngoc},
title = {Gradient estimates of {Li} {Yau} type for a general heat equation on {Riemannian} manifolds},
journal = {Archivum mathematicum},
pages = {207--219},
year = {2016},
volume = {52},
number = {4},
doi = {10.5817/AM2016-4-207},
mrnumber = {3610650},
zbl = {06674900},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-207/}
}
TY - JOUR AU - Khanh, Nguyen Ngoc TI - Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds JO - Archivum mathematicum PY - 2016 SP - 207 EP - 219 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-4-207/ DO - 10.5817/AM2016-4-207 LA - en ID - 10_5817_AM2016_4_207 ER -
Khanh, Nguyen Ngoc. Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds. Archivum mathematicum, Tome 52 (2016) no. 4, pp. 207-219. doi: 10.5817/AM2016-4-207
[1] Chen, Q., Jost, J., Qiu, H.B.: Existence and Liouville theorems for $V$-harmonic maps from complete manifolds. Ann. Global Anal. Geom. 42 (2012), 565–584. | DOI | MR | Zbl
[2] Davies, E.B.: Heat kernels and spectral theory. Cambridge University Press, 1989. | MR | Zbl
[3] Dung, N.T., Khanh, N.N.: Gradient estimates of Hamilton - Souplet - Zhang type for a general heat equation on Riemannian manifolds. Arch. Math (Basel) 105 (2015), 479–490. | DOI | MR | Zbl
[4] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Arch. Math. (Basel) 94 (2010), 265–275. | DOI | MR | Zbl
[5] Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986), 152–201. | MR | Zbl
[6] Li, Y.: Li-Yau-Hamilton estimates and Bakry-Emery Ricci curvature. Nonlinear Anal. 113 (2015), 1–32. | MR | Zbl
[7] Negrin, E.R.: Gradient estimates and a Liouville type theorem for the Schrödinger operator. J. Funct. Anal. 127 (1995), 198–203. | DOI | MR | Zbl
Cité par Sources :