Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
Archivum mathematicum, Tome 52 (2016) no. 3, pp. 159-203.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of $(J^2=\pm 1)$-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.
DOI : 10.5817/AM2016-3-159
Classification : 53C05, 53C07, 53C15, 53C50
Keywords: $(J^2=\pm 1)$-metric manifold; $\alpha $-structure; natural connection; Nijenhuis tensor; second Nijenhuis tensor; Kobayashi-Nomizu connection; first canonical connection; well adapted connection; connection with totally skew-symmetric torsion; canonical connection
@article{10_5817_AM2016_3_159,
     author = {Etayo, Fernando and Santamar{\'\i}a, Rafael},
     title = {Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds},
     journal = {Archivum mathematicum},
     pages = {159--203},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2016},
     doi = {10.5817/AM2016-3-159},
     mrnumber = {3553174},
     zbl = {06644065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/}
}
TY  - JOUR
AU  - Etayo, Fernando
AU  - Santamaría, Rafael
TI  - Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
JO  - Archivum mathematicum
PY  - 2016
SP  - 159
EP  - 203
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/
DO  - 10.5817/AM2016-3-159
LA  - en
ID  - 10_5817_AM2016_3_159
ER  - 
%0 Journal Article
%A Etayo, Fernando
%A Santamaría, Rafael
%T Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
%J Archivum mathematicum
%D 2016
%P 159-203
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/
%R 10.5817/AM2016-3-159
%G en
%F 10_5817_AM2016_3_159
Etayo, Fernando; Santamaría, Rafael. Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds. Archivum mathematicum, Tome 52 (2016) no. 3, pp. 159-203. doi : 10.5817/AM2016-3-159. http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/

Cité par Sources :