Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
Archivum mathematicum, Tome 52 (2016) no. 3, pp. 159-203 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of $(J^2=\pm 1)$-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.
We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of $(J^2=\pm 1)$-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.
DOI : 10.5817/AM2016-3-159
Classification : 53C05, 53C07, 53C15, 53C50
Keywords: $(J^2=\pm 1)$-metric manifold; $\alpha $-structure; natural connection; Nijenhuis tensor; second Nijenhuis tensor; Kobayashi-Nomizu connection; first canonical connection; well adapted connection; connection with totally skew-symmetric torsion; canonical connection
@article{10_5817_AM2016_3_159,
     author = {Etayo, Fernando and Santamar{\'\i}a, Rafael},
     title = {Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds},
     journal = {Archivum mathematicum},
     pages = {159--203},
     year = {2016},
     volume = {52},
     number = {3},
     doi = {10.5817/AM2016-3-159},
     mrnumber = {3553174},
     zbl = {06644065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/}
}
TY  - JOUR
AU  - Etayo, Fernando
AU  - Santamaría, Rafael
TI  - Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
JO  - Archivum mathematicum
PY  - 2016
SP  - 159
EP  - 203
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/
DO  - 10.5817/AM2016-3-159
LA  - en
ID  - 10_5817_AM2016_3_159
ER  - 
%0 Journal Article
%A Etayo, Fernando
%A Santamaría, Rafael
%T Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
%J Archivum mathematicum
%D 2016
%P 159-203
%V 52
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/
%R 10.5817/AM2016-3-159
%G en
%F 10_5817_AM2016_3_159
Etayo, Fernando; Santamaría, Rafael. Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds. Archivum mathematicum, Tome 52 (2016) no. 3, pp. 159-203. doi: 10.5817/AM2016-3-159

[1] Agricola, I.: The Srní lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 42 (2006), 5–84. | MR | Zbl

[2] Bismut, J.M.: A local index theorem for non Kähler manifolds. Math. Ann. 284 (4) (1999), 681–699. DOI:  | DOI | DOI | MR

[3] Chursin, M., Schäfer, L., Smoczyk, K.: Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds. Calc. Var. 41 (1–2) (2011), 111–125. DOI:  | DOI | MR | Zbl

[4] Cruceanu, V., Etayo, F.: On almost para-Hermitian manifolds. Algebras Groups Geom. 16 (1) (1999), 47–61. | MR | Zbl

[5] Davidov, J., Grantcharov, G., Muškarov, O.: Curvature properties of the Chern connection of twistor spaces. Rocky Mountain J. Math. 39 (1) (2009), 27–48. DOI:  | DOI | DOI | MR | Zbl

[6] Etayo, F., Santamaría, R.: $(J^2=\pm 1)$-metric manifolds. Publ. Math. Debrecen 57 (3–4) (2000), 435–444. | MR | Zbl

[7] Etayo, F., Santamaría, R.: The well adapted connection of a $(J^2=\pm 1)$-metric manifold. RACSAM (2016). DOI:  | DOI

[8] Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6 (2) (2002), 303–335. | DOI | MR | Zbl

[9] Gadea, P., Muñoz Masqué, J.: Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. (7) 11 (1991), 377–396. | MR

[10] Ganchev, G., Borisov, A.V.: Note on the almost complex manifolds with a Norden metric. C. R. Acad. Bulgare Sci. 39 (5) (1986), 31–34. | MR | Zbl

[11] Ganchev, G., Kassabov, O.: Hermitian manifolds with flat associated connection. Kodai Math. J. 29 (2) (2006), 281–298. DOI:  | DOI | MR | Zbl

[12] Ganchev, G., Mihova, V.: Canonical connection and the canonical conformal group on an almost complex manifold with $B$-metric. Annuaire Univ. Sofia Fac. Math. Inform. 81 (1) (1987), 195–206. | MR

[13] Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Un. Mat. Ital. B 7 suppl. 11 (2) (1997), 257–288. | MR | Zbl

[14] Gover, A. Rod, Nurowski, P.: Calculus and invariants on almost complex manifolds, including projective and conformal geometry. Illinois J. Math. 57 (2) (2013), 383–427. | MR

[15] Gray, A.: Nearly Kähler manifolds. J. Differential Geom. 4 (3) (1970), 283–309. | DOI | MR | Zbl

[16] Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123 (1) (1980), 35–58. DOI:  | DOI | DOI | MR | Zbl

[17] Gribacheva, D., Mekerov, D.: Canonical connection on a class of Riemannian almost product manifolds. J. Geom. 102 (1–2) (2011), 53–71. DOI:  | DOI | MR | Zbl

[18] Ivanov, S., Zamkovoy, S.: Parahermitian and paraquaternionic manifolds. Differential Geom. Appl. 23 (2) (2005), 205–234. DOI:  | DOI | MR

[19] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. I and II, Interscience, N. York, 1963, 1969. | MR | Zbl

[20] Lichnerowicz, A.: Théorie globale des connexions et des groupes d’holonomie. Edizione Cremonese, Roma, 1957 (Reprinted in 1962), English version: Global theory of connections and holonomy groups, Noordhoff, Leyden, 1976.

[21] Mekerov, D.: On Riemannian almost product manifolds with nonintegrable structure. J. Geom. 89 (1–2) (2008), 119–129. DOI:  | DOI | MR | Zbl

[22] Mekerov, D.: On the geometry of the connection with totally skew-symmetric torsion on almost complex manifolds with Norden metric. C. R. Acad. Bulgare Sci. 63 (1) (2010), 19–28. | MR | Zbl

[23] Mekerov, D., Manev, M.: Natural connection with totally skew-symmetric torsion on Riemann almost product manifolds. Int. J. Geom. Methods Mod. Phys. 9 (1) (2012), 14. DOI:  | DOI | DOI | MR

[24] Mihova, V.: Canonical connection and the canonical conformal group on a Riemannian almost-product manifold. Serdica Math. J. 15 (1989), 351–358. | MR | Zbl

[25] Olszak, Z.: Four-dimensional para-Hermitian manifold. Tensor (N. S.) 56 (1995), 215–226. | MR

[26] Staikova, M., Gribachev, K.: Canonical connections and their conformal invariants on Riemannian almost product manifolds. Serdica Math. J. 18 (1992), 150–161. | MR | Zbl

[27] Teofilova, M.: Complex connections on complex manifolds with Norden metric. Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics (Singapore), World Scientific, 2005, pp. 326–335. DOI:  | DOI | MR | Zbl

[28] Teofilova, M.: Almost complex connections on almost complex manifolds with Norden metric. Trends in Differential Geometry, Complex Analysis and Mathematical Physics (Singapore), World Scientific, 2009, pp. 231–240. DOI:  | DOI | MR | Zbl

[29] Vezzoni, L.: On the canonical Hermitian connection in nearly Kähler manifolds. Kodai Math. J. 32 (3) (2009), 420–431. DOI:  | DOI | MR | Zbl

[30] Yano, K.: Affine connexions in an almost product space. Kodai Math. Sem. Rep. 11 (1) (1959), 1–24. DOI:  | DOI | MR | Zbl

Cité par Sources :