Keywords: $(J^2=\pm 1)$-metric manifold; $\alpha $-structure; natural connection; Nijenhuis tensor; second Nijenhuis tensor; Kobayashi-Nomizu connection; first canonical connection; well adapted connection; connection with totally skew-symmetric torsion; canonical connection
@article{10_5817_AM2016_3_159,
author = {Etayo, Fernando and Santamar{\'\i}a, Rafael},
title = {Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds},
journal = {Archivum mathematicum},
pages = {159--203},
year = {2016},
volume = {52},
number = {3},
doi = {10.5817/AM2016-3-159},
mrnumber = {3553174},
zbl = {06644065},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/}
}
TY - JOUR
AU - Etayo, Fernando
AU - Santamaría, Rafael
TI - Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds
JO - Archivum mathematicum
PY - 2016
SP - 159
EP - 203
VL - 52
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-159/
DO - 10.5817/AM2016-3-159
LA - en
ID - 10_5817_AM2016_3_159
ER -
Etayo, Fernando; Santamaría, Rafael. Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds. Archivum mathematicum, Tome 52 (2016) no. 3, pp. 159-203. doi: 10.5817/AM2016-3-159
[1] Agricola, I.: The Srní lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 42 (2006), 5–84. | MR | Zbl
[2] Bismut, J.M.: A local index theorem for non Kähler manifolds. Math. Ann. 284 (4) (1999), 681–699. DOI: | DOI | DOI | MR
[3] Chursin, M., Schäfer, L., Smoczyk, K.: Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds. Calc. Var. 41 (1–2) (2011), 111–125. DOI: | DOI | MR | Zbl
[4] Cruceanu, V., Etayo, F.: On almost para-Hermitian manifolds. Algebras Groups Geom. 16 (1) (1999), 47–61. | MR | Zbl
[5] Davidov, J., Grantcharov, G., Muškarov, O.: Curvature properties of the Chern connection of twistor spaces. Rocky Mountain J. Math. 39 (1) (2009), 27–48. DOI: | DOI | DOI | MR | Zbl
[6] Etayo, F., Santamaría, R.: $(J^2=\pm 1)$-metric manifolds. Publ. Math. Debrecen 57 (3–4) (2000), 435–444. | MR | Zbl
[7] Etayo, F., Santamaría, R.: The well adapted connection of a $(J^2=\pm 1)$-metric manifold. RACSAM (2016). DOI: | DOI
[8] Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6 (2) (2002), 303–335. | DOI | MR | Zbl
[9] Gadea, P., Muñoz Masqué, J.: Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. (7) 11 (1991), 377–396. | MR
[10] Ganchev, G., Borisov, A.V.: Note on the almost complex manifolds with a Norden metric. C. R. Acad. Bulgare Sci. 39 (5) (1986), 31–34. | MR | Zbl
[11] Ganchev, G., Kassabov, O.: Hermitian manifolds with flat associated connection. Kodai Math. J. 29 (2) (2006), 281–298. DOI: | DOI | MR | Zbl
[12] Ganchev, G., Mihova, V.: Canonical connection and the canonical conformal group on an almost complex manifold with $B$-metric. Annuaire Univ. Sofia Fac. Math. Inform. 81 (1) (1987), 195–206. | MR
[13] Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Un. Mat. Ital. B 7 suppl. 11 (2) (1997), 257–288. | MR | Zbl
[14] Gover, A. Rod, Nurowski, P.: Calculus and invariants on almost complex manifolds, including projective and conformal geometry. Illinois J. Math. 57 (2) (2013), 383–427. | MR
[15] Gray, A.: Nearly Kähler manifolds. J. Differential Geom. 4 (3) (1970), 283–309. | DOI | MR | Zbl
[16] Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123 (1) (1980), 35–58. DOI: | DOI | DOI | MR | Zbl
[17] Gribacheva, D., Mekerov, D.: Canonical connection on a class of Riemannian almost product manifolds. J. Geom. 102 (1–2) (2011), 53–71. DOI: | DOI | MR | Zbl
[18] Ivanov, S., Zamkovoy, S.: Parahermitian and paraquaternionic manifolds. Differential Geom. Appl. 23 (2) (2005), 205–234. DOI: | DOI | MR
[19] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. I and II, Interscience, N. York, 1963, 1969. | MR | Zbl
[20] Lichnerowicz, A.: Théorie globale des connexions et des groupes d’holonomie. Edizione Cremonese, Roma, 1957 (Reprinted in 1962), English version: Global theory of connections and holonomy groups, Noordhoff, Leyden, 1976.
[21] Mekerov, D.: On Riemannian almost product manifolds with nonintegrable structure. J. Geom. 89 (1–2) (2008), 119–129. DOI: | DOI | MR | Zbl
[22] Mekerov, D.: On the geometry of the connection with totally skew-symmetric torsion on almost complex manifolds with Norden metric. C. R. Acad. Bulgare Sci. 63 (1) (2010), 19–28. | MR | Zbl
[23] Mekerov, D., Manev, M.: Natural connection with totally skew-symmetric torsion on Riemann almost product manifolds. Int. J. Geom. Methods Mod. Phys. 9 (1) (2012), 14. DOI: | DOI | DOI | MR
[24] Mihova, V.: Canonical connection and the canonical conformal group on a Riemannian almost-product manifold. Serdica Math. J. 15 (1989), 351–358. | MR | Zbl
[25] Olszak, Z.: Four-dimensional para-Hermitian manifold. Tensor (N. S.) 56 (1995), 215–226. | MR
[26] Staikova, M., Gribachev, K.: Canonical connections and their conformal invariants on Riemannian almost product manifolds. Serdica Math. J. 18 (1992), 150–161. | MR | Zbl
[27] Teofilova, M.: Complex connections on complex manifolds with Norden metric. Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics (Singapore), World Scientific, 2005, pp. 326–335. DOI: | DOI | MR | Zbl
[28] Teofilova, M.: Almost complex connections on almost complex manifolds with Norden metric. Trends in Differential Geometry, Complex Analysis and Mathematical Physics (Singapore), World Scientific, 2009, pp. 231–240. DOI: | DOI | MR | Zbl
[29] Vezzoni, L.: On the canonical Hermitian connection in nearly Kähler manifolds. Kodai Math. J. 32 (3) (2009), 420–431. DOI: | DOI | MR | Zbl
[30] Yano, K.: Affine connexions in an almost product space. Kodai Math. Sem. Rep. 11 (1) (1959), 1–24. DOI: | DOI | MR | Zbl
Cité par Sources :