Keywords: linear vector field; Lie algebroid; Weil bundle; gauge bundle functor; lift
@article{10_5817_AM2016_3_131,
author = {Ntyam, A. and Wankap Nono, G. F. and Ndombol, Bitjong},
title = {Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles},
journal = {Archivum mathematicum},
pages = {131--140},
year = {2016},
volume = {52},
number = {3},
doi = {10.5817/AM2016-3-131},
mrnumber = {3553172},
zbl = {06644063},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-131/}
}
TY - JOUR AU - Ntyam, A. AU - Wankap Nono, G. F. AU - Ndombol, Bitjong TI - Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles JO - Archivum mathematicum PY - 2016 SP - 131 EP - 140 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-131/ DO - 10.5817/AM2016-3-131 LA - en ID - 10_5817_AM2016_3_131 ER -
%0 Journal Article %A Ntyam, A. %A Wankap Nono, G. F. %A Ndombol, Bitjong %T Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles %J Archivum mathematicum %D 2016 %P 131-140 %V 52 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-131/ %R 10.5817/AM2016-3-131 %G en %F 10_5817_AM2016_3_131
Ntyam, A.; Wankap Nono, G. F.; Ndombol, Bitjong. Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles. Archivum mathematicum, Tome 52 (2016) no. 3, pp. 131-140. doi: 10.5817/AM2016-3-131
[1] Eck, D.J.: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133–140. | DOI | MR | Zbl
[2] Gancarzewicz, J., Mikulski, W.M., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–14. | DOI | MR | Zbl
[3] Kainz, G., Michor, P.W.: Natural transformations in differential geometry. Czechoslovak Math. J. 37 (1987), 584–607. | MR | Zbl
[4] Kolář, I.: Covariant approach to natural transformations of Weil bundles. Comment. Math. Univ. Carolin. 27 (1986), 723–729. | MR
[5] Kolář, I.: On the natural operators on vector fields. Ann. Global Anal. Geom. 9 (1988), 109–117. | DOI | MR | Zbl
[6] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. Differential Geom. Appl. 2 (1992), 1–16. | DOI | MR | Zbl
[7] Kolář, I., Slovák, J., Michor, P.W.: Natural operations in differential geometry. Springer Verlag Berlin, Heidelberg, 1993. | MR | Zbl
[8] Luciano, O.O.: Categories of multiplicative functors and Morimoto’s conjecture. Institut Fourier, Laboratoire de Mathématiques, Grenoble (1986), Preprint No. 46.
[9] Mackenzie, K.C.H.: General theory of Liegroupoids and Lie algebroids. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2005. | MR
[10] Mikulski, W.M.: Product preserving gauge bundle functors on vector bundles. Colloquium Math. 90 (2) (2001), 277–285. | DOI | MR | Zbl
[11] Mikulski, W.M., Kures, M.: Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles. Lobachevskii Journal of Mathematics 12 (2003), 51–61. | MR | Zbl
[12] Ntyam, A., Kamga, J. Wouafo: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles. Ann. Pol. Math. 82 (3) (2003), 133–140. | DOI | MR
[13] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^A \circ \otimes _s^q \rightarrow \otimes _s^q \circ T^A$ over ${\operatorname{id}}_{T^{A}} $. Ann. Pol. Math. 96 (3) (2009), 295–301. | MR
[14] Ntyam, A., Wankap, G.F., Ndombol, Bitjong: On lifts of some projectable vector fields associated to a product preserving gaugebundle functor on vector bundles. Arch. Math. (Brno) 50 (3) (2014), 161–169. | DOI | MR
[15] Slovák, J.: Prolongations of connections and sprays with respect to Weil functors. Proceedings of the 14th winter school on abstract analysis (Srní, 1986), Rend. Circ. Mat. Palermo (2) Suppl. No. 14 (1987), 143–155, 1987. | MR | Zbl
[16] Weil, A.: Théorie des points proches sur les variétés différentiables. Topologie et Géométrie Différentielle, Colloque du CNRS, Strasbourg (CNRS, Paris, 1953) (1953), 97–110. | Zbl
Cité par Sources :