Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles
Archivum mathematicum, Tome 52 (2016) no. 3, pp. 131-140 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present some lifts (associated to a product preserving gauge bundle functor on vector bundles) of sections of the dual bundle of a vector bundle, some derivations and linear connections on vector bundles.
We present some lifts (associated to a product preserving gauge bundle functor on vector bundles) of sections of the dual bundle of a vector bundle, some derivations and linear connections on vector bundles.
DOI : 10.5817/AM2016-3-131
Classification : 58A32
Keywords: linear vector field; Lie algebroid; Weil bundle; gauge bundle functor; lift
@article{10_5817_AM2016_3_131,
     author = {Ntyam, A. and Wankap Nono, G. F. and Ndombol, Bitjong},
     title = {Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles},
     journal = {Archivum mathematicum},
     pages = {131--140},
     year = {2016},
     volume = {52},
     number = {3},
     doi = {10.5817/AM2016-3-131},
     mrnumber = {3553172},
     zbl = {06644063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-131/}
}
TY  - JOUR
AU  - Ntyam, A.
AU  - Wankap Nono, G. F.
AU  - Ndombol, Bitjong
TI  - Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles
JO  - Archivum mathematicum
PY  - 2016
SP  - 131
EP  - 140
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-131/
DO  - 10.5817/AM2016-3-131
LA  - en
ID  - 10_5817_AM2016_3_131
ER  - 
%0 Journal Article
%A Ntyam, A.
%A Wankap Nono, G. F.
%A Ndombol, Bitjong
%T Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles
%J Archivum mathematicum
%D 2016
%P 131-140
%V 52
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-3-131/
%R 10.5817/AM2016-3-131
%G en
%F 10_5817_AM2016_3_131
Ntyam, A.; Wankap Nono, G. F.; Ndombol, Bitjong. Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles. Archivum mathematicum, Tome 52 (2016) no. 3, pp. 131-140. doi: 10.5817/AM2016-3-131

[1] Eck, D.J.: Product-preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133–140. | DOI | MR | Zbl

[2] Gancarzewicz, J., Mikulski, W.M., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–14. | DOI | MR | Zbl

[3] Kainz, G., Michor, P.W.: Natural transformations in differential geometry. Czechoslovak Math. J. 37 (1987), 584–607. | MR | Zbl

[4] Kolář, I.: Covariant approach to natural transformations of Weil bundles. Comment. Math. Univ. Carolin. 27 (1986), 723–729. | MR

[5] Kolář, I.: On the natural operators on vector fields. Ann. Global Anal. Geom. 9 (1988), 109–117. | DOI | MR | Zbl

[6] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. Differential Geom. Appl. 2 (1992), 1–16. | DOI | MR | Zbl

[7] Kolář, I., Slovák, J., Michor, P.W.: Natural operations in differential geometry. Springer Verlag Berlin, Heidelberg, 1993. | MR | Zbl

[8] Luciano, O.O.: Categories of multiplicative functors and Morimoto’s conjecture. Institut Fourier, Laboratoire de Mathématiques, Grenoble (1986), Preprint No. 46.

[9] Mackenzie, K.C.H.: General theory of Liegroupoids and Lie algebroids. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2005. | MR

[10] Mikulski, W.M.: Product preserving gauge bundle functors on vector bundles. Colloquium Math. 90 (2) (2001), 277–285. | DOI | MR | Zbl

[11] Mikulski, W.M., Kures, M.: Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles. Lobachevskii Journal of Mathematics 12 (2003), 51–61. | MR | Zbl

[12] Ntyam, A., Kamga, J. Wouafo: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles. Ann. Pol. Math. 82 (3) (2003), 133–140. | DOI | MR

[13] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^A \circ \otimes _s^q \rightarrow \otimes _s^q \circ T^A$ over ${\operatorname{id}}_{T^{A}} $. Ann. Pol. Math. 96 (3) (2009), 295–301. | MR

[14] Ntyam, A., Wankap, G.F., Ndombol, Bitjong: On lifts of some projectable vector fields associated to a product preserving gaugebundle functor on vector bundles. Arch. Math. (Brno) 50 (3) (2014), 161–169. | DOI | MR

[15] Slovák, J.: Prolongations of connections and sprays with respect to Weil functors. Proceedings of the 14th winter school on abstract analysis (Srní, 1986), Rend. Circ. Mat. Palermo (2) Suppl. No. 14 (1987), 143–155, 1987. | MR | Zbl

[16] Weil, A.: Théorie des points proches sur les variétés différentiables. Topologie et Géométrie Différentielle, Colloque du CNRS, Strasbourg (CNRS, Paris, 1953) (1953), 97–110. | Zbl

Cité par Sources :