Prolongation of Poisson $2$-form on Weil bundles
Archivum mathematicum, Tome 52 (2016) no. 2, pp. 91-111.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, $M$ denotes a smooth manifold of dimension $n$, $A$ a Weil algebra and $M^{A}$ the associated Weil bundle. When $(M,\omega _{M})$ is a Poisson manifold with $2$-form $\omega _{M}$, we construct the $2$-Poisson form $\omega _{M^{A}}^{A}$, prolongation on $M^{A}$ of the $2$-Poisson form $\omega _{M}$. We give a necessary and sufficient condition for that $M^{A}$ be an $A$-Poisson manifold.
DOI : 10.5817/AM2016-2-91
Classification : 17D63, 53D05, 53D17, 58A20, 58A32
Keywords: Weil bundle; Weil algebra; Poisson manifold; Lie derivative; Poisson 2-form
@article{10_5817_AM2016_2_91,
     author = {Moukala, Norbert Mahoungou and Bossoto, Basile Guy Richard},
     title = {Prolongation of {Poisson} $2$-form on {Weil} bundles},
     journal = {Archivum mathematicum},
     pages = {91--111},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2016},
     doi = {10.5817/AM2016-2-91},
     mrnumber = {3535631},
     zbl = {06644061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-91/}
}
TY  - JOUR
AU  - Moukala, Norbert Mahoungou
AU  - Bossoto, Basile Guy Richard
TI  - Prolongation of Poisson $2$-form on Weil bundles
JO  - Archivum mathematicum
PY  - 2016
SP  - 91
EP  - 111
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-91/
DO  - 10.5817/AM2016-2-91
LA  - en
ID  - 10_5817_AM2016_2_91
ER  - 
%0 Journal Article
%A Moukala, Norbert Mahoungou
%A Bossoto, Basile Guy Richard
%T Prolongation of Poisson $2$-form on Weil bundles
%J Archivum mathematicum
%D 2016
%P 91-111
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-91/
%R 10.5817/AM2016-2-91
%G en
%F 10_5817_AM2016_2_91
Moukala, Norbert Mahoungou; Bossoto, Basile Guy Richard. Prolongation of Poisson $2$-form on Weil bundles. Archivum mathematicum, Tome 52 (2016) no. 2, pp. 91-111. doi : 10.5817/AM2016-2-91. http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-91/

Cité par Sources :