On the Anderson-Badawi $\omega_{R[X]}(I[X])=\omega_R(I)$ conjecture
Archivum mathematicum, Tome 52 (2016) no. 2, pp. 71-78.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative ring with an identity different from zero and $n$ be a positive integer. Anderson and Badawi, in their paper on $n$-absorbing ideals, define a proper ideal $I$ of a commutative ring $R$ to be an $n$-absorbing ideal of $R$, if whenever $x_1 \dots x_{n+1} \in I$ for $x_1, \ldots , x_{n+1} \in R$, then there are $n$ of the $x_i$’s whose product is in $I$ and conjecture that $\omega _{R[X]}(I[X])=\omega _R(I)$ for any ideal $I$ of an arbitrary ring $R$, where $\omega _R(I)= \min \lbrace n\colon I \text{is} \text{an} n\text{-absorbing} \text{ideal} \text{of} R\rbrace $. In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions hold: The ring $R$ is a Prüfer domain. The ring $R$ is a Gaussian ring such that its additive group is torsion-free. The additive group of the ring $R$ is torsion-free and $I$ is a radical ideal of $R$.
DOI : 10.5817/AM2016-2-71
Classification : 13A15, 13B02, 13B25, 13F05
Keywords: $n$-absorbing ideals; strongly $n$-absorbing ideals; polynomial rings; content algebras; Dedekind-Mertens content formula; Prüfer domains; Gaussian algebras; Gaussian rings
@article{10_5817_AM2016_2_71,
     author = {Nasehpour, Peyman},
     title = {On the {Anderson-Badawi} $\omega_{R[X]}(I[X])=\omega_R(I)$ conjecture},
     journal = {Archivum mathematicum},
     pages = {71--78},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2016},
     doi = {10.5817/AM2016-2-71},
     mrnumber = {3535629},
     zbl = {06644059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-71/}
}
TY  - JOUR
AU  - Nasehpour, Peyman
TI  - On the Anderson-Badawi $\omega_{R[X]}(I[X])=\omega_R(I)$ conjecture
JO  - Archivum mathematicum
PY  - 2016
SP  - 71
EP  - 78
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-71/
DO  - 10.5817/AM2016-2-71
LA  - en
ID  - 10_5817_AM2016_2_71
ER  - 
%0 Journal Article
%A Nasehpour, Peyman
%T On the Anderson-Badawi $\omega_{R[X]}(I[X])=\omega_R(I)$ conjecture
%J Archivum mathematicum
%D 2016
%P 71-78
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-71/
%R 10.5817/AM2016-2-71
%G en
%F 10_5817_AM2016_2_71
Nasehpour, Peyman. On the Anderson-Badawi $\omega_{R[X]}(I[X])=\omega_R(I)$ conjecture. Archivum mathematicum, Tome 52 (2016) no. 2, pp. 71-78. doi : 10.5817/AM2016-2-71. http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-71/

Cité par Sources :