Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form
Archivum mathematicum, Tome 52 (2016) no. 2, pp. 113-130 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce a conformal Sasakian manifold and we find the inequality involving Ricci curvature and the squared mean curvature for semi-invariant, almost semi-invariant, $\theta $-slant, invariant and anti-invariant submanifolds tangent to the Reeb vector field and the equality cases are also discussed. Also the inequality involving scalar curvature and the squared mean curvature of some submanifolds of a conformal Sasakian space form are obtained.
We introduce a conformal Sasakian manifold and we find the inequality involving Ricci curvature and the squared mean curvature for semi-invariant, almost semi-invariant, $\theta $-slant, invariant and anti-invariant submanifolds tangent to the Reeb vector field and the equality cases are also discussed. Also the inequality involving scalar curvature and the squared mean curvature of some submanifolds of a conformal Sasakian space form are obtained.
DOI : 10.5817/AM2016-2-113
Classification : 53C25, 53C40, 53D15
Keywords: Ricci curvature; scalar curvature; squared mean curvature; conformal Sasakian space form
@article{10_5817_AM2016_2_113,
     author = {Abedi, Esmaeil and Ziabari, Reyhane Bahrami and Tripathi, Mukut Mani},
     title = {Ricci and scalar curvatures of submanifolds of a conformal {Sasakian} space form},
     journal = {Archivum mathematicum},
     pages = {113--130},
     year = {2016},
     volume = {52},
     number = {2},
     doi = {10.5817/AM2016-2-113},
     mrnumber = {3535632},
     zbl = {06644062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-113/}
}
TY  - JOUR
AU  - Abedi, Esmaeil
AU  - Ziabari, Reyhane Bahrami
AU  - Tripathi, Mukut Mani
TI  - Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form
JO  - Archivum mathematicum
PY  - 2016
SP  - 113
EP  - 130
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-113/
DO  - 10.5817/AM2016-2-113
LA  - en
ID  - 10_5817_AM2016_2_113
ER  - 
%0 Journal Article
%A Abedi, Esmaeil
%A Ziabari, Reyhane Bahrami
%A Tripathi, Mukut Mani
%T Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form
%J Archivum mathematicum
%D 2016
%P 113-130
%V 52
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-2-113/
%R 10.5817/AM2016-2-113
%G en
%F 10_5817_AM2016_2_113
Abedi, Esmaeil; Ziabari, Reyhane Bahrami; Tripathi, Mukut Mani. Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form. Archivum mathematicum, Tome 52 (2016) no. 2, pp. 113-130. doi: 10.5817/AM2016-2-113

[1] Bejancu, A.: Geometry of CR-submanifolds. Mathematics and its Applications (East European Series), vol. 23, D. Reidel Publishing Co., Dordrecht, 1986. | MR | Zbl

[2] Blair, D.E.: Contact manifolds in Riemannian geometry. Math., vol. 509, Springer-Verlag, New York, 1976. | MR | Zbl

[3] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, vol. 203, Birkhauser Boston, Inc., Boston, MA, 2002. | MR | Zbl

[4] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Slant submanifolds in Sasakian manifolds. Glasgow Math. J. 42 (1) (2000), 125–138. | DOI | MR | Zbl

[5] Chen, B.Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math. (Basel) 60 (6) (1993), 568–578. | DOI | MR | Zbl

[6] Chen, B.Y.: Mean curvature and shape operator of isometric immersions in real space form. Glasgow Math. J. 38 (1996), 87–97. | DOI | MR

[7] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J. 41 (1999), 33–41. | DOI | MR | Zbl

[8] Chen, B.Y.: On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms. Arch. Math. (Basel) 74 (2000), 154–160. | DOI | MR | Zbl

[9] Defever, F., Mihai, I., Verstrelen, L.: B.Y.Chen’s inequality for $C$-totally real submanifolds of Sasakian space forms. Boll. Un. Mat. Ital. B (7) 11 (1997), 365–374. | MR

[10] Hong, S., Tripathi, M.M.: On Ricci curvature of submanifolds. Internat. J. Pure Appl. Math. Sci. 2 (2) (2005), 227–245. | MR | Zbl

[11] Hong, S., Tripathi, M.M.: On Ricci curvature of submanifolds of generalized Sasakian space forms. Internat. J. Pure Appl. Math. Sci. 2 (2) (2005), 173–201. | MR | Zbl

[12] Hong, S., Tripathi, M.M.: Ricci curvature of submanifolds of a Sasakian space form. Iranian Journal of Mathematical Sciences and Informatics 1 (2) (2006), 31–51. | MR | Zbl

[13] Mihai, I.: Ricci curvature of submanifolds in Sasakian space forms. J. Austral. Math. Soc. 72 (2002), 247–256. | DOI | MR | Zbl

[14] Petersen, P.: Riemannian geometry. Springer-Verlag, 2006. | MR | Zbl

[15] Tripathi, M.M.: Almost semi-invariant submanifolds of trans-Sasakian manifolds. J. Indian Math. Soc. (N.S.) 62 (1–4) (1996), 225–245. | MR | Zbl

[16] Vaisman, I.: Conformal changes of almost contact metric structures. Geometry and Differential Geometry, Lecture Notes in Math., vol. 792, 1980, pp. 435–443. | MR | Zbl

[17] Yamaguchi, S., Kon, M., Ikawa, T.: C-totallly real submanifolds. J. Differential Geom. 11 (1) (1976), 59–64. | DOI | MR

Cité par Sources :