Bautin bifurgation of a modified generalized Van der Pol-Mathieu equation
Archivum mathematicum, Tome 52 (2016) no. 1, pp. 49-70 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The modified generalized Van der Pol-Mathieu equation is generalization of the equation that is investigated by authors Momeni et al. (2007), Veerman and Verhulst (2009) and Kadeřábek (2012). In this article the Bautin bifurcation of the autonomous system associated with the modified generalized Van der Pol-Mathieu equation has been proved. The existence of limit cycles is studied and the Lyapunov quantities of the autonomous system associated with the modified Van der Pol-Mathieu equation are computed.
The modified generalized Van der Pol-Mathieu equation is generalization of the equation that is investigated by authors Momeni et al. (2007), Veerman and Verhulst (2009) and Kadeřábek (2012). In this article the Bautin bifurcation of the autonomous system associated with the modified generalized Van der Pol-Mathieu equation has been proved. The existence of limit cycles is studied and the Lyapunov quantities of the autonomous system associated with the modified Van der Pol-Mathieu equation are computed.
DOI : 10.5817/AM2016-1-49
Classification : 34C05, 34C23, 34C25, 34C29, 34D05
Keywords: Van der Pol-Mathieu equation; periodic solutions; autonomous system; generalized Hopf bifurcation; Bautin bifurcation; averaging method; limit cycles
@article{10_5817_AM2016_1_49,
     author = {Kade\v{r}\'abek, Zden\v{e}k},
     title = {Bautin bifurgation of a modified generalized {Van} der {Pol-Mathieu} equation},
     journal = {Archivum mathematicum},
     pages = {49--70},
     year = {2016},
     volume = {52},
     number = {1},
     doi = {10.5817/AM2016-1-49},
     mrnumber = {3475112},
     zbl = {06562208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-49/}
}
TY  - JOUR
AU  - Kadeřábek, Zdeněk
TI  - Bautin bifurgation of a modified generalized Van der Pol-Mathieu equation
JO  - Archivum mathematicum
PY  - 2016
SP  - 49
EP  - 70
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-49/
DO  - 10.5817/AM2016-1-49
LA  - en
ID  - 10_5817_AM2016_1_49
ER  - 
%0 Journal Article
%A Kadeřábek, Zdeněk
%T Bautin bifurgation of a modified generalized Van der Pol-Mathieu equation
%J Archivum mathematicum
%D 2016
%P 49-70
%V 52
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-49/
%R 10.5817/AM2016-1-49
%G en
%F 10_5817_AM2016_1_49
Kadeřábek, Zdeněk. Bautin bifurgation of a modified generalized Van der Pol-Mathieu equation. Archivum mathematicum, Tome 52 (2016) no. 1, pp. 49-70. doi: 10.5817/AM2016-1-49

[1] Kadeřábek, Z.: The autonomous system derived from Van der Pol-Mathieu equation. Aplimat - J. Appl. Math., Slovak Univ. Tech., Vol. 5 (2), vol. 5, 2012, pp. 85–96.

[2] Kalas, J., Kadeřábek, Z.: Periodic solutions of a generalized Van der Pol-Mathieu differential equation. Appl. Math. Comput. 234 (2014), 192–202. | DOI | MR | Zbl

[3] Kuznetsov, N.V., Leonov, G.A.: Computation of Lyapunov quantities. Proceedings of the 6th EUROMECH Nonlinear Dynamics Conference, 2008, IPACS Electronic Library, pp. 1–10.

[4] Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. 2nd ed., Springer-Verlag New York, 1998. | MR | Zbl

[5] Momeni, I., Moslehi-Frad, M., Shukla, P.K.: A Van der Pol-Mathieu equation for the dynamics of dust grain charge in dusty plasmas. J. Phys. A: Math. Theor. 40 (2007), F473–F481. | DOI | MR

[6] Perko, L.: Differential Equations and Dynamical Systems. 2nd ed., Springer, 1996. | DOI | MR | Zbl

[7] Veerman, F., Verhulst, F.: Quasiperiodic phenomena in the Van der Pol-Mathieu equation. J. Sound Vibration 326 (1–2) (2009), 314–320. | DOI

[8] Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. 2nd ed., Springer, 2006. | MR

Cité par Sources :