Keywords: Van der Pol-Mathieu equation; periodic solutions; autonomous system; generalized Hopf bifurcation; Bautin bifurcation; averaging method; limit cycles
@article{10_5817_AM2016_1_49,
author = {Kade\v{r}\'abek, Zden\v{e}k},
title = {Bautin bifurgation of a modified generalized {Van} der {Pol-Mathieu} equation},
journal = {Archivum mathematicum},
pages = {49--70},
year = {2016},
volume = {52},
number = {1},
doi = {10.5817/AM2016-1-49},
mrnumber = {3475112},
zbl = {06562208},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-49/}
}
TY - JOUR AU - Kadeřábek, Zdeněk TI - Bautin bifurgation of a modified generalized Van der Pol-Mathieu equation JO - Archivum mathematicum PY - 2016 SP - 49 EP - 70 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-49/ DO - 10.5817/AM2016-1-49 LA - en ID - 10_5817_AM2016_1_49 ER -
Kadeřábek, Zdeněk. Bautin bifurgation of a modified generalized Van der Pol-Mathieu equation. Archivum mathematicum, Tome 52 (2016) no. 1, pp. 49-70. doi: 10.5817/AM2016-1-49
[1] Kadeřábek, Z.: The autonomous system derived from Van der Pol-Mathieu equation. Aplimat - J. Appl. Math., Slovak Univ. Tech., Vol. 5 (2), vol. 5, 2012, pp. 85–96.
[2] Kalas, J., Kadeřábek, Z.: Periodic solutions of a generalized Van der Pol-Mathieu differential equation. Appl. Math. Comput. 234 (2014), 192–202. | DOI | MR | Zbl
[3] Kuznetsov, N.V., Leonov, G.A.: Computation of Lyapunov quantities. Proceedings of the 6th EUROMECH Nonlinear Dynamics Conference, 2008, IPACS Electronic Library, pp. 1–10.
[4] Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. 2nd ed., Springer-Verlag New York, 1998. | MR | Zbl
[5] Momeni, I., Moslehi-Frad, M., Shukla, P.K.: A Van der Pol-Mathieu equation for the dynamics of dust grain charge in dusty plasmas. J. Phys. A: Math. Theor. 40 (2007), F473–F481. | DOI | MR
[6] Perko, L.: Differential Equations and Dynamical Systems. 2nd ed., Springer, 1996. | DOI | MR | Zbl
[7] Veerman, F., Verhulst, F.: Quasiperiodic phenomena in the Van der Pol-Mathieu equation. J. Sound Vibration 326 (1–2) (2009), 314–320. | DOI
[8] Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. 2nd ed., Springer, 2006. | MR
Cité par Sources :