Keywords: necessary; sufficient; time scales; Lyapunov functionals; stability; zero solution
@article{10_5817_AM2016_1_21,
author = {Raffoul, Youssef N.},
title = {Necessary and sufficient conditions for stability of {Volterra} integro-dynamic equation on time scales},
journal = {Archivum mathematicum},
pages = {21--33},
year = {2016},
volume = {52},
number = {1},
doi = {10.5817/AM2016-1-21},
mrnumber = {3475110},
zbl = {06562206},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-21/}
}
TY - JOUR AU - Raffoul, Youssef N. TI - Necessary and sufficient conditions for stability of Volterra integro-dynamic equation on time scales JO - Archivum mathematicum PY - 2016 SP - 21 EP - 33 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-21/ DO - 10.5817/AM2016-1-21 LA - en ID - 10_5817_AM2016_1_21 ER -
%0 Journal Article %A Raffoul, Youssef N. %T Necessary and sufficient conditions for stability of Volterra integro-dynamic equation on time scales %J Archivum mathematicum %D 2016 %P 21-33 %V 52 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-21/ %R 10.5817/AM2016-1-21 %G en %F 10_5817_AM2016_1_21
Raffoul, Youssef N. Necessary and sufficient conditions for stability of Volterra integro-dynamic equation on time scales. Archivum mathematicum, Tome 52 (2016) no. 1, pp. 21-33. doi: 10.5817/AM2016-1-21
[1] Adivar, M.: Function bounds for solutions of Volterra integrodynamic equations on time scales. EJQTDE (7) (2010), 1–22. | MR
[2] Adivar, M., Raffoul, Y.: Existence results for periodic solutions of integro-dynamic equations on time scales. Ann. Mat. Pura Appl. (4) 188 (4) (2009), 543–559. DOI: | DOI | DOI | MR | Zbl
[3] Adivar, M., Raffoul, Y.: Stability and periodicity in dynamic delay equations. Comput. Math. Appl. 58 (2009), 264–272. | DOI | MR | Zbl
[4] Adivar, M., Raffoul, Y.: A note on “Stability and periodicity in dynamic delay equations”. Comput. Math. Appl. 59 (2010), 3351–3354. | DOI | MR | Zbl
[5] Adivar, M., Raffoul, Y.: Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat 21 (3) (2013), 17–32. | MR | Zbl
[6] Akın–Bohner, E., Raffoul, Y.: Boundeness in functional dynamic equations on time scales. Adv. Difference Equ. (2006), 1–18. | MR
[7] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001. | MR | Zbl
[8] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003. | MR | Zbl
[9] Bohner, M., Raffoul, Y.: Volterra Dynamic Equations on Time Scales. preprint.
[10] Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Dover, New York, 2005. | MR | Zbl
[11] Burton, T.A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover, New York, 2006. | MR | Zbl
[12] Eloe, P., Islam, M., Zhang, B.: Uniform asymptotic stability in linear Volterra integrodifferential equations with applications to delay systems. Dynam. Systems Appl. 9 (2000), 331–344. | MR
[13] Grace, S., Graef, J., Zafer, A.: Oscillation of integro-dynamic equations on time scales. Appl. Math. Lett. 26 (4) (2013), 383–386. | DOI | MR | Zbl
[14] Kulik, T., Tisdell, C.: Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains. Int. J. Difference Equ. 3 (1) (2008), 103–133. | MR
[15] Lupulescu, V., Ntouyas, S., Younus, A.: Qualitative aspects of a Volterra integro-dynamic system on time scales. EJQTDE (5) (2013), 1–35. | MR
[16] Peterson, A., Raffoul, Y.: Exponential stability of dynamic equations on time scales. Adv. Difference Equ. 2 (2005), 133–144. | MR | Zbl
[17] Peterson, A., Tisdell, C.C.: Boundedness and uniqueness of solutions to dynamic equations on time scales. J. Differ. Equations Appl. 10 (13–15) (2004), 1295–1306. | DOI | MR | Zbl
[18] Raffoul, Y.: Boundedness in nonlinear differential equations. Nonlinear Studies 10 (2003), 343–350. | MR | Zbl
[19] Raffoul, Y.: Boundedness in nonlinear functional differential equations with applications to Volterra integrodifferential. J. Integral Equations Appl. 16 (4) (2004). | DOI | MR | Zbl
Cité par Sources :