Necessary and sufficient conditions for stability of Volterra integro-dynamic equation on time scales
Archivum mathematicum, Tome 52 (2016) no. 1, pp. 21-33
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this research we establish necessary and sufficient conditions for the stability of the zero solution of scalar Volterra integro-dynamic equation on general time scales. Our approach is based on the construction of suitable Lyapunov functionals. We will compare our findings with known results and provides application to quantum calculus.
In this research we establish necessary and sufficient conditions for the stability of the zero solution of scalar Volterra integro-dynamic equation on general time scales. Our approach is based on the construction of suitable Lyapunov functionals. We will compare our findings with known results and provides application to quantum calculus.
DOI : 10.5817/AM2016-1-21
Classification : 34D05, 34N05, 39A12, 45D05
Keywords: necessary; sufficient; time scales; Lyapunov functionals; stability; zero solution
@article{10_5817_AM2016_1_21,
     author = {Raffoul, Youssef N.},
     title = {Necessary and sufficient conditions for stability of {Volterra} integro-dynamic equation on time scales},
     journal = {Archivum mathematicum},
     pages = {21--33},
     year = {2016},
     volume = {52},
     number = {1},
     doi = {10.5817/AM2016-1-21},
     mrnumber = {3475110},
     zbl = {06562206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-21/}
}
TY  - JOUR
AU  - Raffoul, Youssef N.
TI  - Necessary and sufficient conditions for stability of Volterra integro-dynamic equation on time scales
JO  - Archivum mathematicum
PY  - 2016
SP  - 21
EP  - 33
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-21/
DO  - 10.5817/AM2016-1-21
LA  - en
ID  - 10_5817_AM2016_1_21
ER  - 
%0 Journal Article
%A Raffoul, Youssef N.
%T Necessary and sufficient conditions for stability of Volterra integro-dynamic equation on time scales
%J Archivum mathematicum
%D 2016
%P 21-33
%V 52
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-21/
%R 10.5817/AM2016-1-21
%G en
%F 10_5817_AM2016_1_21
Raffoul, Youssef N. Necessary and sufficient conditions for stability of Volterra integro-dynamic equation on time scales. Archivum mathematicum, Tome 52 (2016) no. 1, pp. 21-33. doi: 10.5817/AM2016-1-21

[1] Adivar, M.: Function bounds for solutions of Volterra integrodynamic equations on time scales. EJQTDE (7) (2010), 1–22. | MR

[2] Adivar, M., Raffoul, Y.: Existence results for periodic solutions of integro-dynamic equations on time scales. Ann. Mat. Pura Appl. (4) 188 (4) (2009), 543–559. DOI:  | DOI | DOI | MR | Zbl

[3] Adivar, M., Raffoul, Y.: Stability and periodicity in dynamic delay equations. Comput. Math. Appl. 58 (2009), 264–272. | DOI | MR | Zbl

[4] Adivar, M., Raffoul, Y.: A note on “Stability and periodicity in dynamic delay equations”. Comput. Math. Appl. 59 (2010), 3351–3354. | DOI | MR | Zbl

[5] Adivar, M., Raffoul, Y.: Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat 21 (3) (2013), 17–32. | MR | Zbl

[6] Akın–Bohner, E., Raffoul, Y.: Boundeness in functional dynamic equations on time scales. Adv. Difference Equ. (2006), 1–18. | MR

[7] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001. | MR | Zbl

[8] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, 2003. | MR | Zbl

[9] Bohner, M., Raffoul, Y.: Volterra Dynamic Equations on Time Scales. preprint.

[10] Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Dover, New York, 2005. | MR | Zbl

[11] Burton, T.A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover, New York, 2006. | MR | Zbl

[12] Eloe, P., Islam, M., Zhang, B.: Uniform asymptotic stability in linear Volterra integrodifferential equations with applications to delay systems. Dynam. Systems Appl. 9 (2000), 331–344. | MR

[13] Grace, S., Graef, J., Zafer, A.: Oscillation of integro-dynamic equations on time scales. Appl. Math. Lett. 26 (4) (2013), 383–386. | DOI | MR | Zbl

[14] Kulik, T., Tisdell, C.: Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains. Int. J. Difference Equ. 3 (1) (2008), 103–133. | MR

[15] Lupulescu, V., Ntouyas, S., Younus, A.: Qualitative aspects of a Volterra integro-dynamic system on time scales. EJQTDE (5) (2013), 1–35. | MR

[16] Peterson, A., Raffoul, Y.: Exponential stability of dynamic equations on time scales. Adv. Difference Equ. 2 (2005), 133–144. | MR | Zbl

[17] Peterson, A., Tisdell, C.C.: Boundedness and uniqueness of solutions to dynamic equations on time scales. J. Differ. Equations Appl. 10 (13–15) (2004), 1295–1306. | DOI | MR | Zbl

[18] Raffoul, Y.: Boundedness in nonlinear differential equations. Nonlinear Studies 10 (2003), 343–350. | MR | Zbl

[19] Raffoul, Y.: Boundedness in nonlinear functional differential equations with applications to Volterra integrodifferential. J. Integral Equations Appl. 16 (4) (2004). | DOI | MR | Zbl

Cité par Sources :