Asymptotic integration of differential equations with singular $p$-Laplacian
Archivum mathematicum, Tome 52 (2016) no. 1, pp. 13-19.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we deal with the problem of asymptotic integration of nonlinear differential equations with $p-$Laplacian, where $1 p 2$. We prove sufficient conditions under which all solutions of an equation from this class are converging to a linear function as $t \rightarrow \infty $.
DOI : 10.5817/AM2016-1-13
Classification : 34D05, 35B40
Keywords: $p$-Laplacian; differential equation; asymptotic integration
@article{10_5817_AM2016_1_13,
     author = {Medve\v{d}, Milan and Pek\'arkov\'a, Eva},
     title = {Asymptotic integration of differential equations with singular $p${-Laplacian}},
     journal = {Archivum mathematicum},
     pages = {13--19},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2016},
     doi = {10.5817/AM2016-1-13},
     mrnumber = {3475109},
     zbl = {06562205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-13/}
}
TY  - JOUR
AU  - Medveď, Milan
AU  - Pekárková, Eva
TI  - Asymptotic integration of differential equations with singular $p$-Laplacian
JO  - Archivum mathematicum
PY  - 2016
SP  - 13
EP  - 19
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-13/
DO  - 10.5817/AM2016-1-13
LA  - en
ID  - 10_5817_AM2016_1_13
ER  - 
%0 Journal Article
%A Medveď, Milan
%A Pekárková, Eva
%T Asymptotic integration of differential equations with singular $p$-Laplacian
%J Archivum mathematicum
%D 2016
%P 13-19
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-13/
%R 10.5817/AM2016-1-13
%G en
%F 10_5817_AM2016_1_13
Medveď, Milan; Pekárková, Eva. Asymptotic integration of differential equations with singular $p$-Laplacian. Archivum mathematicum, Tome 52 (2016) no. 1, pp. 13-19. doi : 10.5817/AM2016-1-13. http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-13/

Cité par Sources :