Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds
Archivum mathematicum, Tome 52 (2016) no. 1, pp. 1-12 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we classify pseudosymmetric and Ricci-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds.
In this paper we classify pseudosymmetric and Ricci-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds.
DOI : 10.5817/AM2016-1-1
Classification : 53C35, 53D10
Keywords: pseudosymmetric; Ricci-pseudosymmetric; Weyl-pseudosymmetric; $(\kappa, \mu )$-manifolds
@article{10_5817_AM2016_1_1,
     author = {Malekzadeh, N. and Abedi, E. and De, U.C.},
     title = {Pseudosymmetric and {Weyl-pseudosymmetric} $(\kappa , \mu )$-contact metric manifolds},
     journal = {Archivum mathematicum},
     pages = {1--12},
     year = {2016},
     volume = {52},
     number = {1},
     doi = {10.5817/AM2016-1-1},
     mrnumber = {3475108},
     zbl = {06562204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-1/}
}
TY  - JOUR
AU  - Malekzadeh, N.
AU  - Abedi, E.
AU  - De, U.C.
TI  - Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds
JO  - Archivum mathematicum
PY  - 2016
SP  - 1
EP  - 12
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-1/
DO  - 10.5817/AM2016-1-1
LA  - en
ID  - 10_5817_AM2016_1_1
ER  - 
%0 Journal Article
%A Malekzadeh, N.
%A Abedi, E.
%A De, U.C.
%T Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds
%J Archivum mathematicum
%D 2016
%P 1-12
%V 52
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2016-1-1/
%R 10.5817/AM2016-1-1
%G en
%F 10_5817_AM2016_1_1
Malekzadeh, N.; Abedi, E.; De, U.C. Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds. Archivum mathematicum, Tome 52 (2016) no. 1, pp. 1-12. doi: 10.5817/AM2016-1-1

[1] Belkhelfa, M., Deszcz, R., Verstraelen, L.: Symmetry properties of Sasakian space forms. Soochow J. Math. 31 (2005), 611–616. | MR | Zbl

[2] Blair, D.E.: Contact manifolds in Riemannian geometry. Lecture Notes in Math., Springer–Verlag, Berlin, 1976. | MR | Zbl

[3] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91 (1995), 57–65. | DOI | MR | Zbl

[4] Calvaruso, G.: Conformally flat pseudo–symmetric spaces of constant type. Czechoslovak Math. J. 56 (2006), 649–657. | DOI | MR | Zbl

[5] Chaki, M.C., Chaki, B.: On pseudosymmetric manifolds admitting a type of semisymmetric connection. Soochow J. Math. 13 (1987), 1–7. | MR

[6] Cho, J.T., Inoguchi, J.-I.: Pseudo–symmetric contact 3–manifolds. J. Korean Math. Soc. 42 (2005), 913–932. | DOI | MR | Zbl

[7] Cho, J.T., Inoguchi, J.–I., Lee, J.–E.: Pseudo–symmetric contact 3–manifolds. III. Colloq. Math. 114 (2009), 77–98. | DOI | MR | Zbl

[8] Defever, F., Deszcz, R., Verstraelen, L.: On pseudosymmetric para–Kähler manifolds. Colloq. Math. 74 (1997), 253–260. | DOI | MR | Zbl

[9] Defever, F., Deszcz, R., Verstraelen, L., Vrancken, L.: On pseudosymmetric spacetimes. J. Math. Phys. 35 (1994), 5908–5921. | DOI | MR

[10] Deszcz, R.: On Ricci–pseudo–symmetric warped products. Demonstratio Math. 22 (1989), 1053–1065. | MR | Zbl

[11] Deszcz, R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Sér. A 44 (1992), 1–34. | MR | Zbl

[12] Gouli-Andreou, F., Moutafi, E.: Two classes of pseudosymmetric contact metric 3–manifolds. Pacific J. Math. 239 (2009), 17–37. | DOI | MR | Zbl

[13] Gouli–Andreou, F., Moutafi, E.: Three classes of pseudosymmetric contact metric 3–manifolds. Pacific J. Math. 245 (2010), 57–77. | DOI | MR | Zbl

[14] Hashimoto, N., Sekizawa, M.: Three-dimensional conformally flat pseudo–symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286. | MR | Zbl

[15] Kowalski, O., Sekizawa, M.: Local isometry classes of Riemannian 3–manifolds with constant Ricci eigenvalues $\rho _1 = \rho _ 2\ne \rho _ 3$. Arch. Math. (Brno) 32 (1996), 137–145. | MR

[16] Kowalski, O., Sekizawa, M.: Three–dimensional Riemannian manifolds of c–conullity two. World Scientific (Singapore–New Jersey–London–Hong Kong) (1996), Published as Chapter 11 in Monograph E. Boeckx, O. Kowalski, L. Vanhecke, Riemannian Manifolds of Conullity Two.

[17] Kowalski, O., Sekizawa, M.: Pseudo–symmetric spaces of constant type in dimension three–elliptic spaces. Rend. Mat. Appl. (7) 17 (1997), 477–512. | MR | Zbl

[18] Kowalski, O., Sekizawa, M.: Pseudo–symmetric spaces of constant type in dimension three–non–elliptic spaces. Bull. Tokyo Gakugei Univ. (4) 50 (1998), 1–28. | MR | Zbl

[19] Ogiue, K.: On almost contact manifolds admitting axiom of planes or axiom of free mobility. Kodai Math. Sem. Rep. 16 (1964), 223–232. | DOI | MR | Zbl

[20] O’Neill, B.: Semi–Riemannian Geometry. Academic Press New York, 1983. | MR | Zbl

[21] Özgür, C.: On Kenmotsu manifolds satisfying certain pseudosymmetric conditions. World Appl. Sci. J. 1 (2006), 144–149.

[22] Papantoniou, B.J.: Contact Riemannian manifolds satifying $R(\xi , X)\cdot R = 0$ and $ \xi \in (\kappa , \mu )$–nullity distribution. Yokohama Math. J. 40 (1993), 149–161. | MR

[23] Prakasha, D.G., Bagewadi, C.S., Basavarajappa, N.S.: On pseudosymmetric Lorentzian $\alpha $–Sasakian manifolds. Int. J. Pure Appl. Math. 48 (2008), 57–65. | MR | Zbl

[24] Szabó, Z.I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$. I. The local version. J. Differential Geom. 17 (1982), 531–582. | DOI | MR

[25] Szabó, Z.I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$. II. Global versions. Geom. Dedicata 19 (1) (1985), 65–108. | DOI | MR

[26] Tanno, S.: Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J. 40 (1988), 441–448. | DOI | MR | Zbl

Cité par Sources :