Ward identities from recursion formulas for correlation functions in conformal field theory
Archivum mathematicum, Tome 51 (2015) no. 5, pp. 347-356 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A conformal block formulation for the Zhu recursion procedure in conformal field theory which allows to find $n$-point functions in terms of the lower correlations functions is introduced. Then the Zhu reduction operators acting on a tensor product of VOA modules are defined. By means of these operators we show that the Zhu reduction procedure generates explicit forms of Ward identities for conformal blocks of vertex operator algebras. Explicit examples of Ward identities for the Heisenberg and free fermionic vertex operator algebras are supplied.
A conformal block formulation for the Zhu recursion procedure in conformal field theory which allows to find $n$-point functions in terms of the lower correlations functions is introduced. Then the Zhu reduction operators acting on a tensor product of VOA modules are defined. By means of these operators we show that the Zhu reduction procedure generates explicit forms of Ward identities for conformal blocks of vertex operator algebras. Explicit examples of Ward identities for the Heisenberg and free fermionic vertex operator algebras are supplied.
DOI : 10.5817/AM2015-5-347
Classification : 17B69, 30F10, 81T40
Keywords: conformal field theory; conformal blocks; recursion formulas; vertex algebras
@article{10_5817_AM2015_5_347,
     author = {Zuevsky, Alexander},
     title = {Ward identities from recursion formulas for correlation functions in conformal field theory},
     journal = {Archivum mathematicum},
     pages = {347--356},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.5817/AM2015-5-347},
     mrnumber = {3449113},
     zbl = {06537735},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-347/}
}
TY  - JOUR
AU  - Zuevsky, Alexander
TI  - Ward identities from recursion formulas for correlation functions in conformal field theory
JO  - Archivum mathematicum
PY  - 2015
SP  - 347
EP  - 356
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-347/
DO  - 10.5817/AM2015-5-347
LA  - en
ID  - 10_5817_AM2015_5_347
ER  - 
%0 Journal Article
%A Zuevsky, Alexander
%T Ward identities from recursion formulas for correlation functions in conformal field theory
%J Archivum mathematicum
%D 2015
%P 347-356
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-347/
%R 10.5817/AM2015-5-347
%G en
%F 10_5817_AM2015_5_347
Zuevsky, Alexander. Ward identities from recursion formulas for correlation functions in conformal field theory. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 347-356. doi: 10.5817/AM2015-5-347

[1] Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetries in two-dimensional quantum field theory. Nuclear. Phys. B 241 (1984), 333–380. | DOI | MR

[2] Ben-Zvi, D., Frenkel, E.: Vertex algebras and algebraic curves. Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004, Second ed. | MR | Zbl

[3] Borcherds, R.E.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 3068–3071. | DOI | MR | Zbl

[4] Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progr. Math., vol. 112, Birkhäuser (Boston, MA), 1993. | MR | Zbl

[5] Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (494) (1993), viii+64 pp. | MR | Zbl

[6] Frenkel, I. B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure Appl. Math., vol. 134, Academic Press, Boston, 1988. | MR | Zbl

[7] Friedan, D., Shenker, S.: The analytic geometry of two dimensional conformal field theory. Nuclear Phys. B 281 (1987), 509–545. | MR

[8] Gilroy, T.: Genus Two Zhu Theory for Vertex Operator Algebras. Ph.D. thesis, NUI Galway, 2013, 1–89.

[9] Gunning, R.C.: Lectures on Riemann Surfaces. Princeton Univ. Press, Princeton, 1966. | MR | Zbl

[10] Hurley, D., Tuite, M.P.: Virasoro correlation functions for vertex operator algebras. Internat. J. Math. 23 (10) (2012), 17 pp., 1250106. | DOI | MR | Zbl

[11] Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, vol. 10, AMS, Providence, 1998.

[12] Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces. Comm. Math. Phys. 116 (1988), 247–308. | DOI | MR | Zbl

[13] Mason, G., Tuite, M.P.: Torus chiral $n$-point functions for free boson and lattice vertex operator algebras. Comm. Math. Phys. 235 (1) (2003), 47–68. | DOI | MR | Zbl

[14] Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces I. Comm. Math. Phys. 300 (2010), 673–713. | DOI | MR | Zbl

[15] Mason, G., Tuite, M.P.: Vertex operators and modular forms. A window into zeta and modular physics. Math. Sci. Res. Inst. Publ., vol. 57, Cambridge Univ. Press, Cambridge, 2010, pp. 183–278. | MR

[16] Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces II. Contributions in Mathematical and Computational Sciences 8, Springer-Verlag, Berlin-Heidelberg, 2014. | MR | Zbl

[17] Mason, G., Tuite, M.P., Zuevsky, A.: Torus $n$-point functions for $\mathbb{R}$-graded vertex operator superalgebras and continuous fermion orbifolds. Comm. Math. Phys. 283 (2008), 305–342. | DOI | MR

[18] Matsuo, A., Nagatomo, K.: Axioms for a vertex algebra and the locality of quantum fields. MSJ Memoirs 4 (1999), x+110 pp. | MR | Zbl

[19] Serre, J.-P.: A course in Arithmetic. Springer-Verlag, Berlin, 1978. | MR | Zbl

[20] Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetrie. Adv. Stud. Pure Math. 19 (1989), 459–566. | MR

[21] Tuite, M.P., Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras II. arXiv:1308.2441v1, submitted. | MR

[22] Tuite, M.P., Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras I. Comm. Math. Phys. 306 (2011), 419–447. | DOI | MR | Zbl

[23] Tuite, M.P., Zuevsky, A.: The Szegö kernel on a sewn Riemann surface. Comm. Math. Phys. 306 (2011), 617–645. | DOI | MR | Zbl

[24] Tuite, M.P., Zuevsky, A.: A generalized vertex operator algebra for Heisenberg intertwiners. J. Pure Appl. Algebra 216 (2012), 1442–1453. | DOI | MR | Zbl

[25] Ueno, K.: Introduction to conformal field theory with gauge symmetries. Geometry and Physics - Proceedings of the Conference at Aarhus Univeristy, Aarhus, Denmark, New York, Marcel Dekker, 1997. | MR | Zbl

[26] Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9 (1996), 237–302. | DOI | MR | Zbl

Cité par Sources :