Keywords: conformal field theory; conformal blocks; recursion formulas; vertex algebras
@article{10_5817_AM2015_5_347,
author = {Zuevsky, Alexander},
title = {Ward identities from recursion formulas for correlation functions in conformal field theory},
journal = {Archivum mathematicum},
pages = {347--356},
year = {2015},
volume = {51},
number = {5},
doi = {10.5817/AM2015-5-347},
mrnumber = {3449113},
zbl = {06537735},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-347/}
}
TY - JOUR AU - Zuevsky, Alexander TI - Ward identities from recursion formulas for correlation functions in conformal field theory JO - Archivum mathematicum PY - 2015 SP - 347 EP - 356 VL - 51 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-347/ DO - 10.5817/AM2015-5-347 LA - en ID - 10_5817_AM2015_5_347 ER -
%0 Journal Article %A Zuevsky, Alexander %T Ward identities from recursion formulas for correlation functions in conformal field theory %J Archivum mathematicum %D 2015 %P 347-356 %V 51 %N 5 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-347/ %R 10.5817/AM2015-5-347 %G en %F 10_5817_AM2015_5_347
Zuevsky, Alexander. Ward identities from recursion formulas for correlation functions in conformal field theory. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 347-356. doi: 10.5817/AM2015-5-347
[1] Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetries in two-dimensional quantum field theory. Nuclear. Phys. B 241 (1984), 333–380. | DOI | MR
[2] Ben-Zvi, D., Frenkel, E.: Vertex algebras and algebraic curves. Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004, Second ed. | MR | Zbl
[3] Borcherds, R.E.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 3068–3071. | DOI | MR | Zbl
[4] Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progr. Math., vol. 112, Birkhäuser (Boston, MA), 1993. | MR | Zbl
[5] Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (494) (1993), viii+64 pp. | MR | Zbl
[6] Frenkel, I. B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure Appl. Math., vol. 134, Academic Press, Boston, 1988. | MR | Zbl
[7] Friedan, D., Shenker, S.: The analytic geometry of two dimensional conformal field theory. Nuclear Phys. B 281 (1987), 509–545. | MR
[8] Gilroy, T.: Genus Two Zhu Theory for Vertex Operator Algebras. Ph.D. thesis, NUI Galway, 2013, 1–89.
[9] Gunning, R.C.: Lectures on Riemann Surfaces. Princeton Univ. Press, Princeton, 1966. | MR | Zbl
[10] Hurley, D., Tuite, M.P.: Virasoro correlation functions for vertex operator algebras. Internat. J. Math. 23 (10) (2012), 17 pp., 1250106. | DOI | MR | Zbl
[11] Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, vol. 10, AMS, Providence, 1998.
[12] Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces. Comm. Math. Phys. 116 (1988), 247–308. | DOI | MR | Zbl
[13] Mason, G., Tuite, M.P.: Torus chiral $n$-point functions for free boson and lattice vertex operator algebras. Comm. Math. Phys. 235 (1) (2003), 47–68. | DOI | MR | Zbl
[14] Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces I. Comm. Math. Phys. 300 (2010), 673–713. | DOI | MR | Zbl
[15] Mason, G., Tuite, M.P.: Vertex operators and modular forms. A window into zeta and modular physics. Math. Sci. Res. Inst. Publ., vol. 57, Cambridge Univ. Press, Cambridge, 2010, pp. 183–278. | MR
[16] Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces II. Contributions in Mathematical and Computational Sciences 8, Springer-Verlag, Berlin-Heidelberg, 2014. | MR | Zbl
[17] Mason, G., Tuite, M.P., Zuevsky, A.: Torus $n$-point functions for $\mathbb{R}$-graded vertex operator superalgebras and continuous fermion orbifolds. Comm. Math. Phys. 283 (2008), 305–342. | DOI | MR
[18] Matsuo, A., Nagatomo, K.: Axioms for a vertex algebra and the locality of quantum fields. MSJ Memoirs 4 (1999), x+110 pp. | MR | Zbl
[19] Serre, J.-P.: A course in Arithmetic. Springer-Verlag, Berlin, 1978. | MR | Zbl
[20] Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetrie. Adv. Stud. Pure Math. 19 (1989), 459–566. | MR
[21] Tuite, M.P., Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras II. arXiv:1308.2441v1, submitted. | MR
[22] Tuite, M.P., Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras I. Comm. Math. Phys. 306 (2011), 419–447. | DOI | MR | Zbl
[23] Tuite, M.P., Zuevsky, A.: The Szegö kernel on a sewn Riemann surface. Comm. Math. Phys. 306 (2011), 617–645. | DOI | MR | Zbl
[24] Tuite, M.P., Zuevsky, A.: A generalized vertex operator algebra for Heisenberg intertwiners. J. Pure Appl. Algebra 216 (2012), 1442–1453. | DOI | MR | Zbl
[25] Ueno, K.: Introduction to conformal field theory with gauge symmetries. Geometry and Physics - Proceedings of the Conference at Aarhus Univeristy, Aarhus, Denmark, New York, Marcel Dekker, 1997. | MR | Zbl
[26] Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9 (1996), 237–302. | DOI | MR | Zbl
Cité par Sources :