Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions
Archivum mathematicum, Tome 51 (2015) no. 5, pp. 331-346.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study certain ${\mathfrak{sl}}(2,\mathbb{C})$-actions associated to specific examples of branching of scalar generalized Verma modules for compatible pairs $(\mathfrak{g},\mathfrak{p})$, $(\mathfrak{g}^{\prime },\mathfrak{p}^{\prime })$ of Lie algebras and their parabolic subalgebras.
DOI : 10.5817/AM2015-5-331
Classification : 22E47
Keywords: representation theory of simple Lie algebra; generalized Verma modules; singular vectors and composition series; relative Lie algebra and Dirac cohomology
@article{10_5817_AM2015_5_331,
     author = {Pand\v{z}i\'c, Pavle and Somberg, Petr},
     title = {Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions},
     journal = {Archivum mathematicum},
     pages = {331--346},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2015},
     doi = {10.5817/AM2015-5-331},
     mrnumber = {3449112},
     zbl = {06537734},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/}
}
TY  - JOUR
AU  - Pandžić, Pavle
AU  - Somberg, Petr
TI  - Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions
JO  - Archivum mathematicum
PY  - 2015
SP  - 331
EP  - 346
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/
DO  - 10.5817/AM2015-5-331
LA  - en
ID  - 10_5817_AM2015_5_331
ER  - 
%0 Journal Article
%A Pandžić, Pavle
%A Somberg, Petr
%T Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions
%J Archivum mathematicum
%D 2015
%P 331-346
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/
%R 10.5817/AM2015-5-331
%G en
%F 10_5817_AM2015_5_331
Pandžić, Pavle; Somberg, Petr. Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 331-346. doi : 10.5817/AM2015-5-331. http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/

Cité par Sources :