Keywords: representation theory of simple Lie algebra; generalized Verma modules; singular vectors and composition series; relative Lie algebra and Dirac cohomology
@article{10_5817_AM2015_5_331,
author = {Pand\v{z}i\'c, Pavle and Somberg, Petr},
title = {Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions},
journal = {Archivum mathematicum},
pages = {331--346},
year = {2015},
volume = {51},
number = {5},
doi = {10.5817/AM2015-5-331},
mrnumber = {3449112},
zbl = {06537734},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/}
}
TY - JOUR
AU - Pandžić, Pavle
AU - Somberg, Petr
TI - Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions
JO - Archivum mathematicum
PY - 2015
SP - 331
EP - 346
VL - 51
IS - 5
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/
DO - 10.5817/AM2015-5-331
LA - en
ID - 10_5817_AM2015_5_331
ER -
Pandžić, Pavle; Somberg, Petr. Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 331-346. doi: 10.5817/AM2015-5-331
[1] Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63 (1948), 85–124. | DOI | MR | Zbl
[2] Huang, J.-S., Pandžić, P.: Dirac operators in representation theory. Mathematics: Theory and Applications, Birkhäuser Boston, 2006, pp. xii+199. | MR | Zbl
[3] Huang, J.-S., Xiao, W.: Dirac cohomology of highest weight modules. Selecta Math. (N.S.) 18 (4) (2012), 803–824. | DOI | MR | Zbl
[4] Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category ${mathcal O}$. Grad. Stud. Math., vol. 94, 2008. | DOI | MR
[5] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. II. preprint.
[6] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285 (2015), 1–57. | MR | Zbl
[7] Kobayashi, T., Pevzner, M.: Differential symmetry breaking operators. I-General theory and F-method. II-Rankin-Cohen operators for symmetric pairs. to appear in Selecta Math., arXiv:1301.2111.
[8] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. (2) 74 (2) (1961), 329–387. | DOI | MR | Zbl
[9] Kostant, B.: Verma modules and the existence of quasi-invariant differential operators. Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. | MR
[10] Pandžić, P., Somberg, P.: Higher Dirac cohomology of modules with generalized infinitesimal character. to appear in Transform. Groups, arXiv:1310.3570.
Cité par Sources :