Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions
Archivum mathematicum, Tome 51 (2015) no. 5, pp. 331-346 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study certain ${\mathfrak{sl}}(2,\mathbb{C})$-actions associated to specific examples of branching of scalar generalized Verma modules for compatible pairs $(\mathfrak{g},\mathfrak{p})$, $(\mathfrak{g}^{\prime },\mathfrak{p}^{\prime })$ of Lie algebras and their parabolic subalgebras.
We study certain ${\mathfrak{sl}}(2,\mathbb{C})$-actions associated to specific examples of branching of scalar generalized Verma modules for compatible pairs $(\mathfrak{g},\mathfrak{p})$, $(\mathfrak{g}^{\prime },\mathfrak{p}^{\prime })$ of Lie algebras and their parabolic subalgebras.
DOI : 10.5817/AM2015-5-331
Classification : 22E47
Keywords: representation theory of simple Lie algebra; generalized Verma modules; singular vectors and composition series; relative Lie algebra and Dirac cohomology
@article{10_5817_AM2015_5_331,
     author = {Pand\v{z}i\'c, Pavle and Somberg, Petr},
     title = {Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions},
     journal = {Archivum mathematicum},
     pages = {331--346},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.5817/AM2015-5-331},
     mrnumber = {3449112},
     zbl = {06537734},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/}
}
TY  - JOUR
AU  - Pandžić, Pavle
AU  - Somberg, Petr
TI  - Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions
JO  - Archivum mathematicum
PY  - 2015
SP  - 331
EP  - 346
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/
DO  - 10.5817/AM2015-5-331
LA  - en
ID  - 10_5817_AM2015_5_331
ER  - 
%0 Journal Article
%A Pandžić, Pavle
%A Somberg, Petr
%T Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions
%J Archivum mathematicum
%D 2015
%P 331-346
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-331/
%R 10.5817/AM2015-5-331
%G en
%F 10_5817_AM2015_5_331
Pandžić, Pavle; Somberg, Petr. Branching problems and ${\mathfrak{sl}}(2,\mathbb{C})$-actions. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 331-346. doi: 10.5817/AM2015-5-331

[1] Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63 (1948), 85–124. | DOI | MR | Zbl

[2] Huang, J.-S., Pandžić, P.: Dirac operators in representation theory. Mathematics: Theory and Applications, Birkhäuser Boston, 2006, pp. xii+199. | MR | Zbl

[3] Huang, J.-S., Xiao, W.: Dirac cohomology of highest weight modules. Selecta Math. (N.S.) 18 (4) (2012), 803–824. | DOI | MR | Zbl

[4] Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category ${mathcal O}$. Grad. Stud. Math., vol. 94, 2008. | DOI | MR

[5] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. II. preprint.

[6] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285 (2015), 1–57. | MR | Zbl

[7] Kobayashi, T., Pevzner, M.: Differential symmetry breaking operators. I-General theory and F-method. II-Rankin-Cohen operators for symmetric pairs. to appear in Selecta Math., arXiv:1301.2111.

[8] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. (2) 74 (2) (1961), 329–387. | DOI | MR | Zbl

[9] Kostant, B.: Verma modules and the existence of quasi-invariant differential operators. Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. | MR

[10] Pandžić, P., Somberg, P.: Higher Dirac cohomology of modules with generalized infinitesimal character. to appear in Transform. Groups, arXiv:1310.3570.

Cité par Sources :