On the composition structure of the twisted Verma modules for $\mathfrak{sl}(3,\mathbb{C})$
Archivum mathematicum, Tome 51 (2015) no. 5, pp. 315-329 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra $\mathfrak{sl}(3, \mathbb{C})$, including the explicit structure of singular vectors for both $\mathfrak{sl}(3, \mathbb{C})$ and one of its Lie subalgebras $\mathfrak{sl}(2, \mathbb{C})$, and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as ${D}$-modules on the Schubert cells in the full flag manifold for $\mathop {\rm SL} \nolimits (3, \mathbb{C})$.
We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra $\mathfrak{sl}(3, \mathbb{C})$, including the explicit structure of singular vectors for both $\mathfrak{sl}(3, \mathbb{C})$ and one of its Lie subalgebras $\mathfrak{sl}(2, \mathbb{C})$, and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as ${D}$-modules on the Schubert cells in the full flag manifold for $\mathop {\rm SL} \nolimits (3, \mathbb{C})$.
DOI : 10.5817/AM2015-5-315
Classification : 22E47, 33C45, 53A30, 58J70
Keywords: Lie algebra $\mathfrak{sl}(3, \mathbb{C})$; twisted Verma modules; composition structure; $\mathcal{D}$-modules
@article{10_5817_AM2015_5_315,
     author = {K\v{r}i\v{z}ka, Libor and Somberg, Petr},
     title = {On the composition structure of the twisted {Verma} modules for $\mathfrak{sl}(3,\mathbb{C})$},
     journal = {Archivum mathematicum},
     pages = {315--329},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.5817/AM2015-5-315},
     mrnumber = {3449111},
     zbl = {06537733},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-315/}
}
TY  - JOUR
AU  - Křižka, Libor
AU  - Somberg, Petr
TI  - On the composition structure of the twisted Verma modules for $\mathfrak{sl}(3,\mathbb{C})$
JO  - Archivum mathematicum
PY  - 2015
SP  - 315
EP  - 329
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-315/
DO  - 10.5817/AM2015-5-315
LA  - en
ID  - 10_5817_AM2015_5_315
ER  - 
%0 Journal Article
%A Křižka, Libor
%A Somberg, Petr
%T On the composition structure of the twisted Verma modules for $\mathfrak{sl}(3,\mathbb{C})$
%J Archivum mathematicum
%D 2015
%P 315-329
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-315/
%R 10.5817/AM2015-5-315
%G en
%F 10_5817_AM2015_5_315
Křižka, Libor; Somberg, Petr. On the composition structure of the twisted Verma modules for $\mathfrak{sl}(3,\mathbb{C})$. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 315-329. doi: 10.5817/AM2015-5-315

[1] Abe, N.: On the existence of homomorphisms between principal series representations of complex semisimple Lie groups. J. Algebra 330 (1) (2011), 468–481. | DOI | MR | Zbl

[2] Andersen, H.H., Lauritzen, N.: Twisted Verma modules. Studies in Memory of Issai Schur, Progress in Mathematics, vol. 210, Birkhäuser, Boston, 2003, pp. 1–26. | MR | Zbl

[3] Beilinson, A.A., Bernstein, J.N.: Localisation de $\mathfrak{g}$-modules. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18. | MR

[4] Feigin, B.L., Frenkel, E.V.: Affine Kac-Moody algebras and semi-infinite flag manifolds. Comm. Math. Phys. 128 (1) (1990), 161–189. | DOI | MR | Zbl

[5] Fischer, E.: Über die Differentiationsprozesse der Algebra. J. Reine Angew. Math. 148 (1918), 1–78. | MR

[6] Frenkel, E.V., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88, Amer. Math. Soc. Providence, 2004. | MR | Zbl

[7] Hotta, R., Takeuchi, K., Tanisaki, T.: $\mathcal{D}$-Modules, Perverse Sheaves, and Representation Theory. Progress in Mathematics, vol. 236, Birkhäuser Boston, 2008. | MR

[8] Humphreys, J.E.: Representations of Semisimple Lie Algebras in the BGG Category $\mathcal{O}$. Graduate Studies in Mathematics, Amer. Math. soc. Providence, 2008. | MR

[9] Kashiwara, M.: Representaion theory and $\mathcal{D}$-modules on flag varieties. Astérisque 173–174 (1989), 55–109. | MR

[10] Kobayashi, T.: Restrictions of generalized Verma modules to symmetric pairs. Transform. Groups 17 (2) (2012), 523–546. | DOI | MR | Zbl

[11] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. I. Adv. Math. 285 (2015), 1–57. | MR | Zbl

[12] Křižka, L., Somberg, P.: Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type I.: $A_n$-series. (2015) arXiv:1502.07095.

[13] Mazorchuk, V., Stroppel, C.: Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module. Trans. Amer. Math. Soc. 357 (2005), 2939–2973. | DOI | MR | Zbl

[14] Soergel, W.: Character formulas for tilting modules over Kac-Moody algebras. Represent. Theory 2 (1998), 432–448. | DOI | MR | Zbl

Cité par Sources :