Relations between constants of motion and conserved functions
Archivum mathematicum, Tome 51 (2015) no. 5, pp. 297-313 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study relations between functions on the cotangent bundle of a spacetime which are constants of motion for geodesics and functions on the odd-dimensional phase space conserved by the Reeb vector fields of geometrical structures generated by the metric and an electromagnetic field.
We study relations between functions on the cotangent bundle of a spacetime which are constants of motion for geodesics and functions on the odd-dimensional phase space conserved by the Reeb vector fields of geometrical structures generated by the metric and an electromagnetic field.
DOI : 10.5817/AM2015-5-297
Classification : 58A20, 70G45, 70H33, 70H40, 70H45
Keywords: phase space; infinitesimal symmetry; hidden symmetry; gravitational contact phase structure; almost-cosymplectic-contact phase structure; Killing multi-vector field; Killing–Maxwell multi-vector field; function constant of motions; conserved function
@article{10_5817_AM2015_5_297,
     author = {Jany\v{s}ka, Josef},
     title = {Relations between constants of motion and conserved functions},
     journal = {Archivum mathematicum},
     pages = {297--313},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.5817/AM2015-5-297},
     mrnumber = {3449110},
     zbl = {06537732},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-297/}
}
TY  - JOUR
AU  - Janyška, Josef
TI  - Relations between constants of motion and conserved functions
JO  - Archivum mathematicum
PY  - 2015
SP  - 297
EP  - 313
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-297/
DO  - 10.5817/AM2015-5-297
LA  - en
ID  - 10_5817_AM2015_5_297
ER  - 
%0 Journal Article
%A Janyška, Josef
%T Relations between constants of motion and conserved functions
%J Archivum mathematicum
%D 2015
%P 297-313
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-297/
%R 10.5817/AM2015-5-297
%G en
%F 10_5817_AM2015_5_297
Janyška, Josef. Relations between constants of motion and conserved functions. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 297-313. doi: 10.5817/AM2015-5-297

[1] Crampin, M.: Hidden symmetries and Killing tensors. Reports Math. Phys. 20 (1984), 31–40. DOI:  | DOI | MR | Zbl

[2] Duval, C., Valent, G.: Quantum integrability of quadratic Killing tensors. J. Math. Phys. 46 (5) (2005), 053516. DOI:  | DOI | MR | Zbl

[3] Iwai, T.: Symmetries in relativistic dynamics of a charged particle. Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. | MR | Zbl

[4] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity. AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2011, pp. 135–140. DOI:  | DOI

[5] Janyška, J.: Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle. Arch. Math. (Brno) 50 (5) (2014), 297–316. DOI:  | DOI | MR | Zbl

[6] Janyška, J.: Special bracket versus Jacobi bracket on the classical phasespace of general relativistic test particle. Int. J. Geom. Methods Mod. Phys. 11 (7) (2014), 1460020. DOI:  | DOI | MR

[7] Janyška, J.: Remarks on infinitesimal symmetries of geometrical structures of the classical phase space of general relativistic test particle. Int. J. Geom. Methods Mod. Phys. 12 (2015), 1560020. DOI:  | DOI | MR

[8] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. DOI:  | DOI | MR | Zbl

[9] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. (9) 91 (2009), 211–2332. DOI:  | DOI | MR | Zbl

[10] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales. Acta Appl. Math. 110 (2010), 1249–1276. DOI:  | DOI | MR | Zbl

[11] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A: Math. Theor. 45 (2012), 485205. DOI:  | DOI | MR | Zbl

[12] Olver, P.: Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol. 107, Springer, 1986. | DOI | MR | Zbl

[13] Sommers, P.: On Killing tensors and constant of motions. J. Math. Phys. 14 (1973), 787–790. DOI:  | DOI | MR

Cité par Sources :