Mathematical structures behind supersymmetric dualities
Archivum mathematicum, Tome 51 (2015) no. 5, pp. 273-286 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.
The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.
DOI : 10.5817/AM2015-5-273
Classification : 33D60, 33D90, 33E20, 39A13, 81T60
Keywords: elliptic hypergeometric function; hypergeometric series on root systems; basic hypergeometric integrals; hyperbolic hypergeometric integrals; superconformal index; supersymmetric duality; Seiberg duality; mirror symmetry
@article{10_5817_AM2015_5_273,
     author = {Gahramanov, Ilmar},
     title = {Mathematical structures behind supersymmetric dualities},
     journal = {Archivum mathematicum},
     pages = {273--286},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.5817/AM2015-5-273},
     mrnumber = {3449108},
     zbl = {06537730},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-273/}
}
TY  - JOUR
AU  - Gahramanov, Ilmar
TI  - Mathematical structures behind supersymmetric dualities
JO  - Archivum mathematicum
PY  - 2015
SP  - 273
EP  - 286
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-273/
DO  - 10.5817/AM2015-5-273
LA  - en
ID  - 10_5817_AM2015_5_273
ER  - 
%0 Journal Article
%A Gahramanov, Ilmar
%T Mathematical structures behind supersymmetric dualities
%J Archivum mathematicum
%D 2015
%P 273-286
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-273/
%R 10.5817/AM2015-5-273
%G en
%F 10_5817_AM2015_5_273
Gahramanov, Ilmar. Mathematical structures behind supersymmetric dualities. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 273-286. doi: 10.5817/AM2015-5-273

[1] Aharony, O., Hanany, A., Intriligator, K.A., Seiberg, N., Strassler, M.: Aspects of $N=2$ supersymmetric gauge theories in three-dimensions. Nuclear Phys. B 499 (1997), 67–99, , arXiv:hep-th/9703110 [hep-th]. | arXiv | DOI | MR | Zbl

[2] Al-Salam, W.A., Ismail, M.E.H.: $q$-beta integrals and the $q$-Hermite polynomials. Pacific J. Math. 135 2) (1988), 209–221, | DOI | MR | Zbl

[3] Amariti, A., Klare, C.: A journey to 3d: exact relations for adjoint SQCD from dimensional reduction. , arXiv:1409.8623 [hep-th]. | arXiv

[4] Askey, R.: Ramanujan’s extensions of the gamma and beta functions. Amer. Math. Monthly 87 (5) (1980), 346–359, | DOI | MR | Zbl

[5] Askey, R., Wilson, J.A.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319) (1985), iv+55 pp. | MR | Zbl

[6] Benini, F., Cremonesi, S.: Partition functions of ${\mathcal{N}=(2,2)}$ gauge theories on S$^{2}$ and vortices. Comm. Math. Phys. 334 (3) (2015), 62 pages + 16 of appendices, , arXiv:1206.2356 [hep-th]. | arXiv | DOI | MR | Zbl

[7] Bhattacharya, J., Minwalla, S.: Superconformal indices for $N = 6$ Chern Simons theories. JHEP 0901 (014) (2009), 13 pp., | DOI | MR

[8] de Boer, J., Hori, K., Oz, Y., Yin, Z.: Branes and mirror symmetry in $N=2$ supersymmetric gauge theories in three-dimensions. Nuclear Phys. B 502 (1997), 107–124, , arXiv:hep-th/9702154 [hep-th]. | arXiv | MR

[9] Dimofte, T., Gaiotto, D.: An E7 Surprise. JHEP 1210 (129) (2012), 37pp., arXiv:1209.1404 [hep-th].

[10] Dolan, F., Osborn, H.: Applications of the superconformal index for protected operators and $q$-hypergeometric identities to $N=1$ dual theories. Nuclear Phys. B 818 (2009), 137–178, , arXiv:0801.4947 [hep-th]. | arXiv | MR

[11] Dolan, F., Spiridonov, V., Vartanov, G.: From 4d superconformal indices to 3d partition functions. Phys. Lett. B 704 (2011), 234–241, , arXiv:1104.1787 [hep-th]. | arXiv | DOI | MR

[12] Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact Results in D=2 Supersymmetric Gauge Theories. JHEP 1305 (093) (2013), , arXiv:1206.2606 [hep-th]. | arXiv | MR | Zbl

[13] Felder, G., Varchenko, A.: The elliptic gamma function and $SL(3,{\mathbf{Z}})\ltimes{\mathbf{Z}}^3$. Adv. Math 156 (1) (2000), 44–76, , , arXiv:math/9907061. | DOI | arXiv | MR

[14] Frenkel, I.B., Turaev, V.G.: Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions. The Arnold-Gelfand Mathematical Seminars, 1997, , pp. 171–204. | DOI | MR | Zbl

[15] Gadde, A., Yan, W.: Reducing the 4d index to the $S^3$ partition function. JHEP 1212 (003) (2012), 12 pp., , arXiv:1104.2592 [hep-th]. | arXiv | MR

[16] Gahramanov, I., Rosengren, H.:

[17] Gahramanov, I., Rosengren, H.: Integral pentagon relations for 3d superconformal indices. , arXiv:1412.2926 [hep-th]. | arXiv

[18] Gahramanov, I., Rosengren, H.: A new pentagon identity for the tetrahedron index. JHEP 1311 (2013), , , arXiv:1309.2195 [hep-th]. | DOI | arXiv

[19] Gahramanov, I., Spiridonov, V.P.: The star-triangle relation and 3d superconformal indices. JHEP 1508 040 (2015), | DOI | MR

[20] Gahramanov, I., Vartanov, G.: Extended global symmetries for 4D $N = 1$ SQCD theories. J. Phys. A 46 (2013), 285403, , , arXiv:1303.1443 [hep-th]. | DOI | arXiv | MR

[21] Gahramanov, I.B., Vartanov, G.S.: Superconformal indices and partition functions for supersymmetric field theories. XVIIth Intern. Cong. Math. Phys. (2013), 695–703, , , arXiv:1310.8507 [hep-th]. | DOI | arXiv | MR

[22] Gasper, G., Rahman, M.: Basic hypergeometric series. second ed., Cambridge University Press, 2004. | MR | Zbl

[23] Imamura, Y.: Relation between the 4d superconformal index and the $S^3$ partition function. JHEP 1109 (133) (2011), 20 pp., , arXiv:1104.4482 [hep-th]. | arXiv | MR

[24] Imamura, Y., Yokoyama, S.: Index for three dimensional superconformal field theories with general R-charge assignments. JHEP 1104 (2011), 22 pp., , arXiv:1101.0557 [hep-th]. | arXiv | MR | Zbl

[25] Intriligator, K.A.: New RG fixed points and duality in supersymmetric SP(N(c)) and SO(N(c)) gauge theories. Nuclear Phys. B 448 (1995), 187–198, , arXiv:hep-th/9505051 [hep-th]. | arXiv | MR | Zbl

[26] Intriligator, K.A., Seiberg, N.: Mirror symmetry in three-dimensional gauge theories. Phys. Lett. B 387 (1996), 513–519, , arXiv:hep-th/9607207 [hep-th]. | arXiv | DOI | MR

[27] Kapustin, A., Willet, B.: Generalized superconformal index for three dimensional field theories. , arXiv:1106.2484 [hep-th]. | arXiv

[28] Kim, S.: The complete superconformal index for $N=6$ Chern-Simons theory. Nuclear Phys. B 821 (2009), 241–284, , 10.1016/j.nuclphysb.2009.06.025. | DOI | DOI | MR

[29] Kinney, J., Maldacena, J.M., Minwalla, S., Raju, S.: An index for 4 dimensional super conformal theories. Comm. Math. Phys. 275 (2007), 209–254, , , arXiv:hep-th/0510251 [hep-th]. | DOI | arXiv | MR | Zbl

[30] Krattenthaler, C., Spiridonov, V., Vartanov, G.: Superconformal indices of three-dimensional theories related by mirror symmetry. JHEP 1106 (008) (2011), , , arXiv:1103.4075 [hep-th]. | DOI | arXiv | MR | Zbl

[31] Narukawa, A.: The modular properties and the integral representations of the multiple elliptic gamma functions. Adv. Math. 189 (2) (2004), 247–267, , arXiv:math/0306164. | arXiv | DOI | MR | Zbl

[32] Nassrallah, B., Rahman, M.: Projection formulas, a reproducing Kernel and a generating function for $q$-Wilson polynomials. SIAM J. Math. Anal. 16 (1) (1985), 186–197, | DOI | MR | Zbl

[33] Nishizawa, M.: An elliptic analogue of the multiple gamma function. J. Phys. A 34 (36) (2001), 7411–7421. | DOI | MR | Zbl

[34] Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Comm. Math. Phys. 313 (71) (2012), 63 pp., , arXiv:0712.2824 [hep-th]. | arXiv | DOI | MR | Zbl

[35] Rahman, M.: An integral representation of a $_{10}\varphi _9$ and continuous bi-orthogonal $_{10}\varphi _9$. Canad. J. Math. 38 3) (1986), 605–618, | DOI | MR

[36] Rains, E.M.: Transformations of elliptic hypergeometric integrals. Ann. Math. 171 (1) (2010), 169–243, , , arXiv:math/0309252. | DOI | arXiv | MR | Zbl

[37] Romelsberger, C.: Calculating the superconformal index and Seiberg duality. , arXiv:0707.3702 [hep-th]. | arXiv

[38] Romelsberger, C.: Counting chiral primaries in $N = 1$, $d=4$ superconformal field theories. Nuclear Phys. B 747 (2006), 329–353, , , arXiv:hep-th/0510060 [hep-th]. | DOI | arXiv | MR

[39] Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math. 181 (2) (2004), 417–447, , , arXiv:math/0207046. | DOI | arXiv | MR | Zbl

[40] Rosengren, H.: Felder’s elliptic quantum group and elliptic hypergeometric series on the root system $A_n$. Int. Math. Res. Not. 2011 (2011), 2861–2920, , , arXiv:1003.3730. | DOI | arXiv | MR | Zbl

[41] Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38 (2) (1997), 1069–1146, | DOI | MR | Zbl

[42] Seiberg, N.: Electric-magnetic duality in supersymmetric non-Abelian gauge theories. Nuclear Phys. B 435 (1995), 129–146, | DOI | MR | Zbl

[43] Spiridonov, V.: Modified elliptic gamma functions and 6d superconformal indices. , arXiv:1211.2703 [hep-th]. | arXiv | MR | Zbl

[44] Spiridonov, V., Vartanov, G.: Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices. , arXiv:1107.5788 [hep-th]. | arXiv | MR | Zbl

[45] Spiridonov, V., Vartanov, G.: Superconformal indices for $N = 1$ theories with multiple duals. Nuclear Phys. B 824 (2010), 192–216, , , arXiv:0811.1909 [hep-th]. | DOI | arXiv | MR

[46] Spiridonov, V., Vartanov, G.: Supersymmetric dualities beyond the conformal window. Phys. Rev. Lett. 105 (2010), 061603, , , arXiv:1003.6109 [hep-th]. | DOI | arXiv | MR

[47] Spiridonov, V., Vartanov, G.: Elliptic hypergeometry of supersymmetric dualities. Comm. Math. Phys. 304 (2011), 797–874, | DOI | MR | Zbl

[48] Spiridonov, V., Vartanov, G.: Elliptic hypergeometric integrals and $^{\prime }t$ Hooft anomaly matching conditions. JHEP 1206 (016) (2012), 18 pp., | DOI | MR

[49] Spiridonov, V.P.: On the elliptic beta function. Russian Math. Surveys 56 (1) (2001), 185–186, | DOI | MR | Zbl

[50] Spiridonov, V.P.: Theta hypergeometric integrals. Algebra i Analiz 15 (6) (2003), 161–215, , , arXiv:math/0303205. | DOI | arXiv | MR

[51] Spiridonov, V.P.: Essays on the theory of elliptic hypergeometric functions. Russian Math. Surveys 63 (3) (2008), 405–472, | DOI | MR | Zbl

[52] Stokman, J.V.: Hyperbolic beta integrals. Adv. Math. 190 (1) (2005), 119–160, , arXiv:math/0303178. | arXiv | DOI | MR | Zbl

[53] Tizzano, L., Winding, J.: Multiple sine, multiple elliptic gamma functions and rational cones. , arXiv:1502.05996 [math.CA]. | arXiv

[54] van de Bult, F.J.: Hyperbolic hypergeometric functions. Ph.D. thesis, University of Amsterdam, 2007.

[55] van de Bult, F.J.: An elliptic hypergeometric integral with $W(F_4)$ symmetry. Ramanujan J. 25 (1) (2011), 1–20, , , arXiv:0909.4793. | DOI | arXiv | MR

[56] van de Bult, F.J., Rains, E.M.: Limits of multivariate elliptic beta integrals and related bilinear forms. , arXiv:1110.1460. | arXiv

[57] van de Bult, F.J., Rains, E.M.: Limits of multivariate elliptic hypergeometric biorthogonal functions. , arXiv:1110.1458. | arXiv

[58] van de Bult, F.J., Rains, E.M.: Limits of elliptic hypergeometric biorthogonal functions. J. Approx. Theory 193 (0) (2015), 128–163, , , arXiv:1110.1456. | DOI | arXiv | MR

[59] Witten, E.: Constraints on supersymmetry breaking. Nuclear Phys. B 202 (1982), 253–316, | DOI | MR

[60] Yamazaki, M.: Four-dimensional superconformal index reloaded. Theoret. and Math. Phys. 174 (1) (2013), 154–166, | DOI | MR | Zbl

[61] Zwiebel, B.I.: Charging the superconformal index. JHEP 1201 (116) (2012), 31 pp., , , arXiv:1111.1773 [hep-th]. | DOI | arXiv | Zbl

Cité par Sources :