Keywords: elliptic hypergeometric function; hypergeometric series on root systems; basic hypergeometric integrals; hyperbolic hypergeometric integrals; superconformal index; supersymmetric duality; Seiberg duality; mirror symmetry
@article{10_5817_AM2015_5_273,
author = {Gahramanov, Ilmar},
title = {Mathematical structures behind supersymmetric dualities},
journal = {Archivum mathematicum},
pages = {273--286},
year = {2015},
volume = {51},
number = {5},
doi = {10.5817/AM2015-5-273},
mrnumber = {3449108},
zbl = {06537730},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-273/}
}
Gahramanov, Ilmar. Mathematical structures behind supersymmetric dualities. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 273-286. doi: 10.5817/AM2015-5-273
[1] Aharony, O., Hanany, A., Intriligator, K.A., Seiberg, N., Strassler, M.: Aspects of $N=2$ supersymmetric gauge theories in three-dimensions. Nuclear Phys. B 499 (1997), 67–99, , arXiv:hep-th/9703110 [hep-th]. | arXiv | DOI | MR | Zbl
[2] Al-Salam, W.A., Ismail, M.E.H.: $q$-beta integrals and the $q$-Hermite polynomials. Pacific J. Math. 135 2) (1988), 209–221, | DOI | MR | Zbl
[3] Amariti, A., Klare, C.: A journey to 3d: exact relations for adjoint SQCD from dimensional reduction. , arXiv:1409.8623 [hep-th]. | arXiv
[4] Askey, R.: Ramanujan’s extensions of the gamma and beta functions. Amer. Math. Monthly 87 (5) (1980), 346–359, | DOI | MR | Zbl
[5] Askey, R., Wilson, J.A.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319) (1985), iv+55 pp. | MR | Zbl
[6] Benini, F., Cremonesi, S.: Partition functions of ${\mathcal{N}=(2,2)}$ gauge theories on S$^{2}$ and vortices. Comm. Math. Phys. 334 (3) (2015), 62 pages + 16 of appendices, , arXiv:1206.2356 [hep-th]. | arXiv | DOI | MR | Zbl
[7] Bhattacharya, J., Minwalla, S.: Superconformal indices for $N = 6$ Chern Simons theories. JHEP 0901 (014) (2009), 13 pp., | DOI | MR
[8] de Boer, J., Hori, K., Oz, Y., Yin, Z.: Branes and mirror symmetry in $N=2$ supersymmetric gauge theories in three-dimensions. Nuclear Phys. B 502 (1997), 107–124, , arXiv:hep-th/9702154 [hep-th]. | arXiv | MR
[9] Dimofte, T., Gaiotto, D.: An E7 Surprise. JHEP 1210 (129) (2012), 37pp., arXiv:1209.1404 [hep-th].
[10] Dolan, F., Osborn, H.: Applications of the superconformal index for protected operators and $q$-hypergeometric identities to $N=1$ dual theories. Nuclear Phys. B 818 (2009), 137–178, , arXiv:0801.4947 [hep-th]. | arXiv | MR
[11] Dolan, F., Spiridonov, V., Vartanov, G.: From 4d superconformal indices to 3d partition functions. Phys. Lett. B 704 (2011), 234–241, , arXiv:1104.1787 [hep-th]. | arXiv | DOI | MR
[12] Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact Results in D=2 Supersymmetric Gauge Theories. JHEP 1305 (093) (2013), , arXiv:1206.2606 [hep-th]. | arXiv | MR | Zbl
[13] Felder, G., Varchenko, A.: The elliptic gamma function and $SL(3,{\mathbf{Z}})\ltimes{\mathbf{Z}}^3$. Adv. Math 156 (1) (2000), 44–76, , , arXiv:math/9907061. | DOI | arXiv | MR
[14] Frenkel, I.B., Turaev, V.G.: Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions. The Arnold-Gelfand Mathematical Seminars, 1997, , pp. 171–204. | DOI | MR | Zbl
[15] Gadde, A., Yan, W.: Reducing the 4d index to the $S^3$ partition function. JHEP 1212 (003) (2012), 12 pp., , arXiv:1104.2592 [hep-th]. | arXiv | MR
[16] Gahramanov, I., Rosengren, H.:
[17] Gahramanov, I., Rosengren, H.: Integral pentagon relations for 3d superconformal indices. , arXiv:1412.2926 [hep-th]. | arXiv
[18] Gahramanov, I., Rosengren, H.: A new pentagon identity for the tetrahedron index. JHEP 1311 (2013), , , arXiv:1309.2195 [hep-th]. | DOI | arXiv
[19] Gahramanov, I., Spiridonov, V.P.: The star-triangle relation and 3d superconformal indices. JHEP 1508 040 (2015), | DOI | MR
[20] Gahramanov, I., Vartanov, G.: Extended global symmetries for 4D $N = 1$ SQCD theories. J. Phys. A 46 (2013), 285403, , , arXiv:1303.1443 [hep-th]. | DOI | arXiv | MR
[21] Gahramanov, I.B., Vartanov, G.S.: Superconformal indices and partition functions for supersymmetric field theories. XVIIth Intern. Cong. Math. Phys. (2013), 695–703, , , arXiv:1310.8507 [hep-th]. | DOI | arXiv | MR
[22] Gasper, G., Rahman, M.: Basic hypergeometric series. second ed., Cambridge University Press, 2004. | MR | Zbl
[23] Imamura, Y.: Relation between the 4d superconformal index and the $S^3$ partition function. JHEP 1109 (133) (2011), 20 pp., , arXiv:1104.4482 [hep-th]. | arXiv | MR
[24] Imamura, Y., Yokoyama, S.: Index for three dimensional superconformal field theories with general R-charge assignments. JHEP 1104 (2011), 22 pp., , arXiv:1101.0557 [hep-th]. | arXiv | MR | Zbl
[25] Intriligator, K.A.: New RG fixed points and duality in supersymmetric SP(N(c)) and SO(N(c)) gauge theories. Nuclear Phys. B 448 (1995), 187–198, , arXiv:hep-th/9505051 [hep-th]. | arXiv | MR | Zbl
[26] Intriligator, K.A., Seiberg, N.: Mirror symmetry in three-dimensional gauge theories. Phys. Lett. B 387 (1996), 513–519, , arXiv:hep-th/9607207 [hep-th]. | arXiv | DOI | MR
[27] Kapustin, A., Willet, B.: Generalized superconformal index for three dimensional field theories. , arXiv:1106.2484 [hep-th]. | arXiv
[28] Kim, S.: The complete superconformal index for $N=6$ Chern-Simons theory. Nuclear Phys. B 821 (2009), 241–284, , 10.1016/j.nuclphysb.2009.06.025. | DOI | DOI | MR
[29] Kinney, J., Maldacena, J.M., Minwalla, S., Raju, S.: An index for 4 dimensional super conformal theories. Comm. Math. Phys. 275 (2007), 209–254, , , arXiv:hep-th/0510251 [hep-th]. | DOI | arXiv | MR | Zbl
[30] Krattenthaler, C., Spiridonov, V., Vartanov, G.: Superconformal indices of three-dimensional theories related by mirror symmetry. JHEP 1106 (008) (2011), , , arXiv:1103.4075 [hep-th]. | DOI | arXiv | MR | Zbl
[31] Narukawa, A.: The modular properties and the integral representations of the multiple elliptic gamma functions. Adv. Math. 189 (2) (2004), 247–267, , arXiv:math/0306164. | arXiv | DOI | MR | Zbl
[32] Nassrallah, B., Rahman, M.: Projection formulas, a reproducing Kernel and a generating function for $q$-Wilson polynomials. SIAM J. Math. Anal. 16 (1) (1985), 186–197, | DOI | MR | Zbl
[33] Nishizawa, M.: An elliptic analogue of the multiple gamma function. J. Phys. A 34 (36) (2001), 7411–7421. | DOI | MR | Zbl
[34] Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Comm. Math. Phys. 313 (71) (2012), 63 pp., , arXiv:0712.2824 [hep-th]. | arXiv | DOI | MR | Zbl
[35] Rahman, M.: An integral representation of a $_{10}\varphi _9$ and continuous bi-orthogonal $_{10}\varphi _9$. Canad. J. Math. 38 3) (1986), 605–618, | DOI | MR
[36] Rains, E.M.: Transformations of elliptic hypergeometric integrals. Ann. Math. 171 (1) (2010), 169–243, , , arXiv:math/0309252. | DOI | arXiv | MR | Zbl
[37] Romelsberger, C.: Calculating the superconformal index and Seiberg duality. , arXiv:0707.3702 [hep-th]. | arXiv
[38] Romelsberger, C.: Counting chiral primaries in $N = 1$, $d=4$ superconformal field theories. Nuclear Phys. B 747 (2006), 329–353, , , arXiv:hep-th/0510060 [hep-th]. | DOI | arXiv | MR
[39] Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math. 181 (2) (2004), 417–447, , , arXiv:math/0207046. | DOI | arXiv | MR | Zbl
[40] Rosengren, H.: Felder’s elliptic quantum group and elliptic hypergeometric series on the root system $A_n$. Int. Math. Res. Not. 2011 (2011), 2861–2920, , , arXiv:1003.3730. | DOI | arXiv | MR | Zbl
[41] Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38 (2) (1997), 1069–1146, | DOI | MR | Zbl
[42] Seiberg, N.: Electric-magnetic duality in supersymmetric non-Abelian gauge theories. Nuclear Phys. B 435 (1995), 129–146, | DOI | MR | Zbl
[43] Spiridonov, V.: Modified elliptic gamma functions and 6d superconformal indices. , arXiv:1211.2703 [hep-th]. | arXiv | MR | Zbl
[44] Spiridonov, V., Vartanov, G.: Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices. , arXiv:1107.5788 [hep-th]. | arXiv | MR | Zbl
[45] Spiridonov, V., Vartanov, G.: Superconformal indices for $N = 1$ theories with multiple duals. Nuclear Phys. B 824 (2010), 192–216, , , arXiv:0811.1909 [hep-th]. | DOI | arXiv | MR
[46] Spiridonov, V., Vartanov, G.: Supersymmetric dualities beyond the conformal window. Phys. Rev. Lett. 105 (2010), 061603, , , arXiv:1003.6109 [hep-th]. | DOI | arXiv | MR
[47] Spiridonov, V., Vartanov, G.: Elliptic hypergeometry of supersymmetric dualities. Comm. Math. Phys. 304 (2011), 797–874, | DOI | MR | Zbl
[48] Spiridonov, V., Vartanov, G.: Elliptic hypergeometric integrals and $^{\prime }t$ Hooft anomaly matching conditions. JHEP 1206 (016) (2012), 18 pp., | DOI | MR
[49] Spiridonov, V.P.: On the elliptic beta function. Russian Math. Surveys 56 (1) (2001), 185–186, | DOI | MR | Zbl
[50] Spiridonov, V.P.: Theta hypergeometric integrals. Algebra i Analiz 15 (6) (2003), 161–215, , , arXiv:math/0303205. | DOI | arXiv | MR
[51] Spiridonov, V.P.: Essays on the theory of elliptic hypergeometric functions. Russian Math. Surveys 63 (3) (2008), 405–472, | DOI | MR | Zbl
[52] Stokman, J.V.: Hyperbolic beta integrals. Adv. Math. 190 (1) (2005), 119–160, , arXiv:math/0303178. | arXiv | DOI | MR | Zbl
[53] Tizzano, L., Winding, J.: Multiple sine, multiple elliptic gamma functions and rational cones. , arXiv:1502.05996 [math.CA]. | arXiv
[54] van de Bult, F.J.: Hyperbolic hypergeometric functions. Ph.D. thesis, University of Amsterdam, 2007.
[55] van de Bult, F.J.: An elliptic hypergeometric integral with $W(F_4)$ symmetry. Ramanujan J. 25 (1) (2011), 1–20, , , arXiv:0909.4793. | DOI | arXiv | MR
[56] van de Bult, F.J., Rains, E.M.: Limits of multivariate elliptic beta integrals and related bilinear forms. , arXiv:1110.1460. | arXiv
[57] van de Bult, F.J., Rains, E.M.: Limits of multivariate elliptic hypergeometric biorthogonal functions. , arXiv:1110.1458. | arXiv
[58] van de Bult, F.J., Rains, E.M.: Limits of elliptic hypergeometric biorthogonal functions. J. Approx. Theory 193 (0) (2015), 128–163, , , arXiv:1110.1456. | DOI | arXiv | MR
[59] Witten, E.: Constraints on supersymmetry breaking. Nuclear Phys. B 202 (1982), 253–316, | DOI | MR
[60] Yamazaki, M.: Four-dimensional superconformal index reloaded. Theoret. and Math. Phys. 174 (1) (2013), 154–166, | DOI | MR | Zbl
[61] Zwiebel, B.I.: Charging the superconformal index. JHEP 1201 (116) (2012), 31 pp., , , arXiv:1111.1773 [hep-th]. | DOI | arXiv | Zbl
Cité par Sources :