Generic one-step bracket-generating distributions of rank four
Archivum mathematicum, Tome 51 (2015) no. 5, pp. 257-264 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a uniform, explicit description of the generic types of one–step bracket–generating distributions of rank four. A manifold carrying such a structure has dimension at least five and no higher than ten. For each of the generic types, we give a brief description of the resulting class of generic distributions and of geometries equivalent to them. For dimensions different from eight and nine, these are available in the literature. The remaining two cases are dealt with in my doctoral thesis.
We give a uniform, explicit description of the generic types of one–step bracket–generating distributions of rank four. A manifold carrying such a structure has dimension at least five and no higher than ten. For each of the generic types, we give a brief description of the resulting class of generic distributions and of geometries equivalent to them. For dimensions different from eight and nine, these are available in the literature. The remaining two cases are dealt with in my doctoral thesis.
DOI : 10.5817/AM2015-5-257
Classification : 53C15, 58A30
Keywords: generic distributions of rank four; canonical connection; parabolic geometry
@article{10_5817_AM2015_5_257,
     author = {De Zanet, Chiara},
     title = {Generic one-step bracket-generating distributions of rank four},
     journal = {Archivum mathematicum},
     pages = {257--264},
     year = {2015},
     volume = {51},
     number = {5},
     doi = {10.5817/AM2015-5-257},
     mrnumber = {3449106},
     zbl = {06537728},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-257/}
}
TY  - JOUR
AU  - De Zanet, Chiara
TI  - Generic one-step bracket-generating distributions of rank four
JO  - Archivum mathematicum
PY  - 2015
SP  - 257
EP  - 264
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-257/
DO  - 10.5817/AM2015-5-257
LA  - en
ID  - 10_5817_AM2015_5_257
ER  - 
%0 Journal Article
%A De Zanet, Chiara
%T Generic one-step bracket-generating distributions of rank four
%J Archivum mathematicum
%D 2015
%P 257-264
%V 51
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-257/
%R 10.5817/AM2015-5-257
%G en
%F 10_5817_AM2015_5_257
De Zanet, Chiara. Generic one-step bracket-generating distributions of rank four. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 257-264. doi: 10.5817/AM2015-5-257

[1] Agrachev, A., Marigo, A.: Rigid Carnot algebras: classification. J. Dynam. Control System 11 (2005), 449–494. | DOI | MR

[2] Biquard, O.: Quaternionic contact structures. Quaternionic contact structures in mathematics and physics (Rome 1999), Univ. Studi Roma, 1999, pp. 29–30. | MR

[3] Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque, no. 265, Soc. Math. France Inst. Henri Poincaré, 2000. | Zbl

[4] Čap, A., Eastwood, M.: Some special geometry in dimension six. Proceedings of the 22nd Winter School Geometry and Physics (Srní, 2002). Rend. Circ. Mat. Palermo (2) Suppl. No. 71, 2003, pp. 93–98. | MR | Zbl

[5] Čap, A., Schmalz, G.: Partially integrable almost CR manifolds of CR dimension and codimension two. Lie Groups Geometric Structures and Differential Equations – One Hundred Years after Sophus Lie (Kyoto$/$Nara, 1999), Adv. Stud. Pure Math. 37, 2002, electronically available as ESI Preprint 937, pp. 45–77. | MR | Zbl

[6] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Math. Surveys Monogr., vol. 154, AMS, 2009. | DOI | MR | Zbl

[7] Cartan, É.: Les systeme de Pfaff a cinq variables et les équations aux d érivées partielles du second ordre. Ann. Sci. École Norm. 27 (1910), 109–192. | MR

[8] Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. Math. Surveys Monogr., vol. 91, AMS, 2002. | MR | Zbl

[9] Schmalz, G., Slovák, J.: The geometry of hyperbolic and elliptic $CR$–manifolds of codimension two. Asian J. Math. 4 (3) (2000), 565–598. | DOI | MR | Zbl

Cité par Sources :