Keywords: generic distributions of rank four; canonical connection; parabolic geometry
@article{10_5817_AM2015_5_257,
author = {De Zanet, Chiara},
title = {Generic one-step bracket-generating distributions of rank four},
journal = {Archivum mathematicum},
pages = {257--264},
year = {2015},
volume = {51},
number = {5},
doi = {10.5817/AM2015-5-257},
mrnumber = {3449106},
zbl = {06537728},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-5-257/}
}
De Zanet, Chiara. Generic one-step bracket-generating distributions of rank four. Archivum mathematicum, Tome 51 (2015) no. 5, pp. 257-264. doi: 10.5817/AM2015-5-257
[1] Agrachev, A., Marigo, A.: Rigid Carnot algebras: classification. J. Dynam. Control System 11 (2005), 449–494. | DOI | MR
[2] Biquard, O.: Quaternionic contact structures. Quaternionic contact structures in mathematics and physics (Rome 1999), Univ. Studi Roma, 1999, pp. 29–30. | MR
[3] Biquard, O.: Métriques d’Einstein asymptotiquement symétriques. Astérisque, no. 265, Soc. Math. France Inst. Henri Poincaré, 2000. | Zbl
[4] Čap, A., Eastwood, M.: Some special geometry in dimension six. Proceedings of the 22nd Winter School Geometry and Physics (Srní, 2002). Rend. Circ. Mat. Palermo (2) Suppl. No. 71, 2003, pp. 93–98. | MR | Zbl
[5] Čap, A., Schmalz, G.: Partially integrable almost CR manifolds of CR dimension and codimension two. Lie Groups Geometric Structures and Differential Equations – One Hundred Years after Sophus Lie (Kyoto$/$Nara, 1999), Adv. Stud. Pure Math. 37, 2002, electronically available as ESI Preprint 937, pp. 45–77. | MR | Zbl
[6] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Math. Surveys Monogr., vol. 154, AMS, 2009. | DOI | MR | Zbl
[7] Cartan, É.: Les systeme de Pfaff a cinq variables et les équations aux d érivées partielles du second ordre. Ann. Sci. École Norm. 27 (1910), 109–192. | MR
[8] Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. Math. Surveys Monogr., vol. 91, AMS, 2002. | MR | Zbl
[9] Schmalz, G., Slovák, J.: The geometry of hyperbolic and elliptic $CR$–manifolds of codimension two. Asian J. Math. 4 (3) (2000), 565–598. | DOI | MR | Zbl
Cité par Sources :