Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces
Archivum mathematicum, Tome 51 (2015) no. 4, pp. 233-254 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some Ostrowski’s type inequalities for the Riemann-Stieltjes integral $\int _{a}^{b}f\left( e^{it}\right) du\left( t\right) $ of continuous complex valued integrands $f\colon \mathcal{C}\left( 0,1\right) \rightarrow \mathbb{C}$ defined on the complex unit circle $\mathcal{C}\left( 0,1\right) $ and various subclasses of integrators $u\colon \left[ a,b\right] \subseteq \left[ 0,2\pi \right] \rightarrow \mathbb{C}$ of bounded variation are given. Natural applications for functions of unitary operators in Hilbert spaces are provided as well.
Some Ostrowski’s type inequalities for the Riemann-Stieltjes integral $\int _{a}^{b}f\left( e^{it}\right) du\left( t\right) $ of continuous complex valued integrands $f\colon \mathcal{C}\left( 0,1\right) \rightarrow \mathbb{C}$ defined on the complex unit circle $\mathcal{C}\left( 0,1\right) $ and various subclasses of integrators $u\colon \left[ a,b\right] \subseteq \left[ 0,2\pi \right] \rightarrow \mathbb{C}$ of bounded variation are given. Natural applications for functions of unitary operators in Hilbert spaces are provided as well.
DOI : 10.5817/AM2015-4-233
Classification : 26D15, 41A51, 47A63
Keywords: Ostrowski’s type inequalities; Riemann-Stieltjes integral inequalities; unitary operators in Hilbert spaces; spectral theory; quadrature rules
@article{10_5817_AM2015_4_233,
     author = {Dragomir, S.S.},
     title = {Ostrowski{\textquoteright}s type inequalities for complex functions defined on unit circle with applications for unitary operators in {Hilbert} spaces},
     journal = {Archivum mathematicum},
     pages = {233--254},
     year = {2015},
     volume = {51},
     number = {4},
     doi = {10.5817/AM2015-4-233},
     mrnumber = {3434605},
     zbl = {06537727},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-233/}
}
TY  - JOUR
AU  - Dragomir, S.S.
TI  - Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces
JO  - Archivum mathematicum
PY  - 2015
SP  - 233
EP  - 254
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-233/
DO  - 10.5817/AM2015-4-233
LA  - en
ID  - 10_5817_AM2015_4_233
ER  - 
%0 Journal Article
%A Dragomir, S.S.
%T Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces
%J Archivum mathematicum
%D 2015
%P 233-254
%V 51
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-233/
%R 10.5817/AM2015-4-233
%G en
%F 10_5817_AM2015_4_233
Dragomir, S.S. Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 233-254. doi: 10.5817/AM2015-4-233

[1] Dragomir, S. S.: On the Ostrowski’s inequality for Riemann-Stieltjes integral. Korean J. Appl. Math. 7 (2000), 477–485. | Zbl

[2] Dragomir, S. S.: On the Ostrowski inequality for Riemann-Stieltjes integral $\int _{a}^{b}f\left( t\right) du\left( t\right) $ where $f$ is of Hölder type and $u$ is of bounded variation and applications. J. KSIAM 5 (1) (2001), 35–45.

[3] Dragomir, S. S.: Ostrowski’s type inequalities for continuous functions of selfadjoint operators on Hilbert spaces: a survey of recent results. Ann. Funct. Anal. 2 (1) (2011), 139–205. | DOI | MR | Zbl

[4] Dragomir, S. S.: Ostrowski’s type inequalities for some classes of continuous functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 62 (12) (2011), 4439–4448. | DOI | MR | Zbl

[5] Helmberg, G.: Introduction to Spectral Theory in Hilbert Space. John Wiley and Sons, 1969. | MR | Zbl

[6] Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert (German). erman), Comment. Math. Helv. 10 (1) (1937), 226–227. | DOI | MR

Cité par Sources :