Keywords: Ostrowski’s type inequalities; Riemann-Stieltjes integral inequalities; unitary operators in Hilbert spaces; spectral theory; quadrature rules
@article{10_5817_AM2015_4_233,
author = {Dragomir, S.S.},
title = {Ostrowski{\textquoteright}s type inequalities for complex functions defined on unit circle with applications for unitary operators in {Hilbert} spaces},
journal = {Archivum mathematicum},
pages = {233--254},
year = {2015},
volume = {51},
number = {4},
doi = {10.5817/AM2015-4-233},
mrnumber = {3434605},
zbl = {06537727},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-233/}
}
TY - JOUR AU - Dragomir, S.S. TI - Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces JO - Archivum mathematicum PY - 2015 SP - 233 EP - 254 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-233/ DO - 10.5817/AM2015-4-233 LA - en ID - 10_5817_AM2015_4_233 ER -
%0 Journal Article %A Dragomir, S.S. %T Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces %J Archivum mathematicum %D 2015 %P 233-254 %V 51 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-233/ %R 10.5817/AM2015-4-233 %G en %F 10_5817_AM2015_4_233
Dragomir, S.S. Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 233-254. doi: 10.5817/AM2015-4-233
[1] Dragomir, S. S.: On the Ostrowski’s inequality for Riemann-Stieltjes integral. Korean J. Appl. Math. 7 (2000), 477–485. | Zbl
[2] Dragomir, S. S.: On the Ostrowski inequality for Riemann-Stieltjes integral $\int _{a}^{b}f\left( t\right) du\left( t\right) $ where $f$ is of Hölder type and $u$ is of bounded variation and applications. J. KSIAM 5 (1) (2001), 35–45.
[3] Dragomir, S. S.: Ostrowski’s type inequalities for continuous functions of selfadjoint operators on Hilbert spaces: a survey of recent results. Ann. Funct. Anal. 2 (1) (2011), 139–205. | DOI | MR | Zbl
[4] Dragomir, S. S.: Ostrowski’s type inequalities for some classes of continuous functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 62 (12) (2011), 4439–4448. | DOI | MR | Zbl
[5] Helmberg, G.: Introduction to Spectral Theory in Hilbert Space. John Wiley and Sons, 1969. | MR | Zbl
[6] Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert (German). erman), Comment. Math. Helv. 10 (1) (1937), 226–227. | DOI | MR
Cité par Sources :