Non-decomposable Nambu brackets
Archivum mathematicum, Tome 51 (2015) no. 4, pp. 211-232
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds.
It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds.
DOI : 10.5817/AM2015-4-211
Classification : 53D17, 53D99, 58A10, 70G10, 70G45, 70H50
Keywords: Nambu bracket; Darboux Theorem; Moser trick; multisymplectic; presymplectic; Weinstein splitting principle
@article{10_5817_AM2015_4_211,
     author = {Bering, Klaus},
     title = {Non-decomposable {Nambu} brackets},
     journal = {Archivum mathematicum},
     pages = {211--232},
     year = {2015},
     volume = {51},
     number = {4},
     doi = {10.5817/AM2015-4-211},
     mrnumber = {3434604},
     zbl = {06537726},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-211/}
}
TY  - JOUR
AU  - Bering, Klaus
TI  - Non-decomposable Nambu brackets
JO  - Archivum mathematicum
PY  - 2015
SP  - 211
EP  - 232
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-211/
DO  - 10.5817/AM2015-4-211
LA  - en
ID  - 10_5817_AM2015_4_211
ER  - 
%0 Journal Article
%A Bering, Klaus
%T Non-decomposable Nambu brackets
%J Archivum mathematicum
%D 2015
%P 211-232
%V 51
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-211/
%R 10.5817/AM2015-4-211
%G en
%F 10_5817_AM2015_4_211
Bering, Klaus. Non-decomposable Nambu brackets. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 211-232. doi: 10.5817/AM2015-4-211

[1] Alekseevsky, D., Guha, P.: On decomposability of Nambu-Poisson tensor. Acta Math. Univ. Comenian. (N.S.) 65 (1996), 1–10. | MR | Zbl

[2] Awane, A.: $k$-symplectic structures. J. Math. Phys. 33 (1992), 4046–4052. | DOI | MR | Zbl

[3] Baez, J.C., Hoffnung, A.E., Rogers, C.L.: Categorified symplectic geometry and the classical string. Comm. Math. Phys. 293 (2010), 701–725, arXiv:0808.0246. | DOI | MR | Zbl

[4] Bagger, J., Lambert, N.: Modeling multiple M2’s. Phys. Rev. D 75 (2007), 045020, arXiv:hep-th/0611108. | DOI | MR

[5] Cantrijn, F., Ibort, A., de León, M.: On the geometry of multisymplectic manifolds. J. Austral. Math. Soc. Ser. A 66 (1999), 303–330. | DOI | MR | Zbl

[6] de Azcárraga, J.A., Izquierdo, J.M.: $n$-ary Algebras: a Review with Applications. J. Phys. A 43 (2010), 293001, arXiv:1005.1028. | DOI | Zbl

[7] de Azcárraga, J.A., Perelomov, A.M., Bueno, J.C. Pérez: New generalized Poisson structures. J. Phys. A 29 (1996), 151–157, arXiv:q-alg/9601007. | DOI | MR

[8] Dito, G., Flato, M., Sternheimer, D., Takhtajan, L.: Deformation quantization and Nambu mechanics. Comm. Math. Phys. 183 (1997), 1–22, arXiv:hep-th/9602016. | DOI | MR | Zbl

[9] Filippov, V.T.: $n$-Lie algebras. Siberian Math. J. 26 (1985), 879–891. | DOI | MR | Zbl

[10] Gautheron, Ph.: Some remarks concerning Nambu mechanics. Lett. Math. Phys. 37 (1996), 103–116. | MR | Zbl

[11] Gustavsson, A.: Algebraic structures on parallel M2-branes. Nuclear Phys. B 811 (2009), 66–76, arXiv:0709.1260. | MR | Zbl

[12] Martin, G.: A Darboux theorem for multi-symplectic manifolds. Lett. Math. Phys. 16 (1988), 133–138. | DOI | MR | Zbl

[13] Michor, P.W., Vaisman, I.: A note on $n$-ary Poisson brackets. Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 165–172, arXiv:math/9901117. | MR | Zbl

[14] Moser, J.: On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286–294. | DOI | MR | Zbl

[15] Nakanishi, N.: On Nambu-Poisson manifolds. Rev. Math. Phys. 10 (1998), 499–510. | MR | Zbl

[16] Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7 (1973), 2405–2412. | DOI | MR | Zbl

[17] Pandit, S.A., Gangal, A.D.: Momentum maps and Noether theorem for generalized Nambu mechanics. arXiv:math/9908023.

[18] Pandit, S.A., Gangal, A.D.: On generalized Nambu mechanics. J. Phys. A 31 (1998), 2899–2912, arXiv:chao-dyn/9609015. | DOI | MR | Zbl

[19] Sahoo, D., Valsakumar, M.C.: Nambu mechanics and its quantization. Phys. Rev. A 46 (1992), 4410–4412. | DOI

[20] Takhtajan, L.: On foundation of the generalized Nambu mechanics. Comm. Math. Phys. 160 (1994), 295–315, arXiv:hep-th/9301111. | DOI | MR | Zbl

[21] Vaisman, I.: A survey on Nambu-Poisson brackets. Acta Math. Univ. Comenian. (N.S.) 68 (1999), 213–241, arXiv:math/9901047. | MR | Zbl

[22] Weinstein, A.: The local structure of Poisson manifolds. J. Differential Geom. 18 (1983), 523–557. | MR | Zbl

[23] Weitzenböck, R.: Invariantentheorie. P. Noordhoff, Groningen, 1923.

Cité par Sources :