Non-decomposable Nambu brackets
Archivum mathematicum, Tome 51 (2015) no. 4, pp. 211-232
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds.
DOI :
10.5817/AM2015-4-211
Classification :
53D17, 53D99, 58A10, 70G10, 70G45, 70H50
Keywords: Nambu bracket; Darboux Theorem; Moser trick; multisymplectic; presymplectic; Weinstein splitting principle
Keywords: Nambu bracket; Darboux Theorem; Moser trick; multisymplectic; presymplectic; Weinstein splitting principle
@article{10_5817_AM2015_4_211,
author = {Bering, Klaus},
title = {Non-decomposable {Nambu} brackets},
journal = {Archivum mathematicum},
pages = {211--232},
publisher = {mathdoc},
volume = {51},
number = {4},
year = {2015},
doi = {10.5817/AM2015-4-211},
mrnumber = {3434604},
zbl = {06537726},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-211/}
}
Bering, Klaus. Non-decomposable Nambu brackets. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 211-232. doi: 10.5817/AM2015-4-211
Cité par Sources :