Non-decomposable Nambu brackets
Archivum mathematicum, Tome 51 (2015) no. 4, pp. 211-232.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds.
DOI : 10.5817/AM2015-4-211
Classification : 53D17, 53D99, 58A10, 70G10, 70G45, 70H50
Keywords: Nambu bracket; Darboux Theorem; Moser trick; multisymplectic; presymplectic; Weinstein splitting principle
@article{10_5817_AM2015_4_211,
     author = {Bering, Klaus},
     title = {Non-decomposable {Nambu} brackets},
     journal = {Archivum mathematicum},
     pages = {211--232},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2015},
     doi = {10.5817/AM2015-4-211},
     mrnumber = {3434604},
     zbl = {06537726},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-211/}
}
TY  - JOUR
AU  - Bering, Klaus
TI  - Non-decomposable Nambu brackets
JO  - Archivum mathematicum
PY  - 2015
SP  - 211
EP  - 232
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-211/
DO  - 10.5817/AM2015-4-211
LA  - en
ID  - 10_5817_AM2015_4_211
ER  - 
%0 Journal Article
%A Bering, Klaus
%T Non-decomposable Nambu brackets
%J Archivum mathematicum
%D 2015
%P 211-232
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-211/
%R 10.5817/AM2015-4-211
%G en
%F 10_5817_AM2015_4_211
Bering, Klaus. Non-decomposable Nambu brackets. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 211-232. doi : 10.5817/AM2015-4-211. http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-211/

Cité par Sources :