New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space
Archivum mathematicum, Tome 51 (2015) no. 4, pp. 201-209 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb{H}^{n+1}$, that is, complete hypersurfaces of $\mathbb{H}^{n+1}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb{R}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb{H}^{n+1}$. Furthermore, a rigidity result concerning the compact case is also given.
In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb{H}^{n+1}$, that is, complete hypersurfaces of $\mathbb{H}^{n+1}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb{R}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb{H}^{n+1}$. Furthermore, a rigidity result concerning the compact case is also given.
DOI : 10.5817/AM2015-4-201
Classification : 53A10, 53B30, 53C42, 53C50
Keywords: hyperbolic space; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders
@article{10_5817_AM2015_4_201,
     author = {Aquino, C{\'\i}cero P. and de Lima, Henrique F.},
     title = {New characterizations of linear {Weingarten} hypersurfaces immersed in the hyperbolic space},
     journal = {Archivum mathematicum},
     pages = {201--209},
     year = {2015},
     volume = {51},
     number = {4},
     doi = {10.5817/AM2015-4-201},
     mrnumber = {3434603},
     zbl = {06537725},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-201/}
}
TY  - JOUR
AU  - Aquino, Cícero P.
AU  - de Lima, Henrique F.
TI  - New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space
JO  - Archivum mathematicum
PY  - 2015
SP  - 201
EP  - 209
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-201/
DO  - 10.5817/AM2015-4-201
LA  - en
ID  - 10_5817_AM2015_4_201
ER  - 
%0 Journal Article
%A Aquino, Cícero P.
%A de Lima, Henrique F.
%T New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space
%J Archivum mathematicum
%D 2015
%P 201-209
%V 51
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-201/
%R 10.5817/AM2015-4-201
%G en
%F 10_5817_AM2015_4_201
Aquino, Cícero P.; de Lima, Henrique F. New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 201-209. doi: 10.5817/AM2015-4-201

[1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form. Yokohama Math. J. 35 (1987), 123–126. | MR | Zbl

[2] Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Amer. Math. Soc. 120 (1994), 1223–1229. | DOI | MR | Zbl

[3] Aquino, C.P., de Lima, H.F.: On the geometry of linear Weingarten hypersurfaces in the hyperbolic space. Monatsh. Math. 171 (2013), 259–268. | DOI | MR | Zbl

[4] Caminha, A.: The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. 42 (2011), 277–300. | DOI | MR | Zbl

[5] Cartan, É.: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pura Appl. 17 (1938), 177–191. | DOI | MR | Zbl

[6] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. | DOI | MR | Zbl

[7] Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665–672. | DOI | MR | Zbl

[8] Li, H.: Global rigidity theorems of hypersurfaces. Ark. Mat. 35 (1997), 327–351. | DOI | MR | Zbl

[9] Li, H., Suh, Y.J., Wei, G.: Linear Weingarten hypersurfaces in a unit sphere. Bull. Korean Math. Soc. 46 (2009), 321–329. | DOI | MR | Zbl

[10] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math. 96 (1974), 207–213. | DOI | MR | Zbl

[11] Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19 (1967), 205–214. | DOI | MR | Zbl

[12] Ryan, P.J.: Hypersurfaces with parallel Ricci tensor. Osaka J. Math. 8 (1971), 251–259. | MR | Zbl

[13] Shu, S.: Complete hypersurfaces with constant scalar curvature in a hyperbolic space. Balkan J. Geom. Appl. 12 (2007), 107–115. | MR | Zbl

[14] Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201–228. | DOI | MR

[15] Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25 (1976), 659–670. | DOI | MR

Cité par Sources :