Keywords: hyperbolic space; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders
@article{10_5817_AM2015_4_201,
author = {Aquino, C{\'\i}cero P. and de Lima, Henrique F.},
title = {New characterizations of linear {Weingarten} hypersurfaces immersed in the hyperbolic space},
journal = {Archivum mathematicum},
pages = {201--209},
year = {2015},
volume = {51},
number = {4},
doi = {10.5817/AM2015-4-201},
mrnumber = {3434603},
zbl = {06537725},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-201/}
}
TY - JOUR AU - Aquino, Cícero P. AU - de Lima, Henrique F. TI - New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space JO - Archivum mathematicum PY - 2015 SP - 201 EP - 209 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-201/ DO - 10.5817/AM2015-4-201 LA - en ID - 10_5817_AM2015_4_201 ER -
%0 Journal Article %A Aquino, Cícero P. %A de Lima, Henrique F. %T New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space %J Archivum mathematicum %D 2015 %P 201-209 %V 51 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-201/ %R 10.5817/AM2015-4-201 %G en %F 10_5817_AM2015_4_201
Aquino, Cícero P.; de Lima, Henrique F. New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 201-209. doi: 10.5817/AM2015-4-201
[1] Abe, N., Koike, N., Yamaguchi, S.: Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form. Yokohama Math. J. 35 (1987), 123–126. | MR | Zbl
[2] Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Amer. Math. Soc. 120 (1994), 1223–1229. | DOI | MR | Zbl
[3] Aquino, C.P., de Lima, H.F.: On the geometry of linear Weingarten hypersurfaces in the hyperbolic space. Monatsh. Math. 171 (2013), 259–268. | DOI | MR | Zbl
[4] Caminha, A.: The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. 42 (2011), 277–300. | DOI | MR | Zbl
[5] Cartan, É.: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pura Appl. 17 (1938), 177–191. | DOI | MR | Zbl
[6] Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. | DOI | MR | Zbl
[7] Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665–672. | DOI | MR | Zbl
[8] Li, H.: Global rigidity theorems of hypersurfaces. Ark. Mat. 35 (1997), 327–351. | DOI | MR | Zbl
[9] Li, H., Suh, Y.J., Wei, G.: Linear Weingarten hypersurfaces in a unit sphere. Bull. Korean Math. Soc. 46 (2009), 321–329. | DOI | MR | Zbl
[10] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math. 96 (1974), 207–213. | DOI | MR | Zbl
[11] Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19 (1967), 205–214. | DOI | MR | Zbl
[12] Ryan, P.J.: Hypersurfaces with parallel Ricci tensor. Osaka J. Math. 8 (1971), 251–259. | MR | Zbl
[13] Shu, S.: Complete hypersurfaces with constant scalar curvature in a hyperbolic space. Balkan J. Geom. Appl. 12 (2007), 107–115. | MR | Zbl
[14] Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201–228. | DOI | MR
[15] Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25 (1976), 659–670. | DOI | MR
Cité par Sources :