Keywords: Higgs bundle; flat connection; representation space; deformation retraction
@article{10_5817_AM2015_4_191,
author = {Biswas, Indranil and Florentino, Carlos},
title = {Higgs bundles and representation spaces associated to morphisms},
journal = {Archivum mathematicum},
pages = {191--199},
year = {2015},
volume = {51},
number = {4},
doi = {10.5817/AM2015-4-191},
mrnumber = {3434602},
zbl = {06537724},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-191/}
}
TY - JOUR AU - Biswas, Indranil AU - Florentino, Carlos TI - Higgs bundles and representation spaces associated to morphisms JO - Archivum mathematicum PY - 2015 SP - 191 EP - 199 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-191/ DO - 10.5817/AM2015-4-191 LA - en ID - 10_5817_AM2015_4_191 ER -
Biswas, Indranil; Florentino, Carlos. Higgs bundles and representation spaces associated to morphisms. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 191-199. doi: 10.5817/AM2015-4-191
[1] Anchouche, B., Biswas, I.: Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold. Amer. J. Math. 123 (2001), 207–228. | DOI | MR | Zbl
[2] Biswas, I., Bruzzo, U.: On semistable principal bundles over a complex projective manifold. II. Geom. Dedicata 146 (2010), 27–41. | DOI | MR | Zbl
[3] Biswas, I., Florentino, C.: Character varieties of virtually nilpotent Kähler groups and $G$–Higgs bundles. Ann. Inst. Fourier (Grenoble), to appear, arXiv:1405.0610.
[4] Biswas, I., Florentino, C.: Commuting elements in reductive groups and Higgs bundles on Abelian varieties. J. Algebra 388 (2013), 194–202. | DOI | MR | Zbl
[5] Biswas, I., Gómez, T.L.: Connections and Higgs fields on a principal bundle. Ann. Global Anal. Geom. 33 (2008), 19–46. | DOI | MR | Zbl
[6] Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups. Mem. Amer. Math. Soc. 157 (2002), no. 747. | MR | Zbl
[7] Florentino, C., Lawton, S.: Topology of character varieties of Abelian groups. preprint arXiv:1301.7616. | MR | Zbl
[8] Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. preprint arXiv hep-th/9902029, 1999. | MR | Zbl
[9] Katzarkov, L., Pantev, T.: Representations of fundamental groups whose Higgs bundles are pullbacks. J. Differential Geom. 39 (1994), 103–121. | MR | Zbl
[10] Pettet, A., Souto, J.: Commuting tuples in reductive groups and their maximal compact subgroups. Geom. Topol. 17 (2013), 2513–2593. | DOI | MR | Zbl
[11] Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. | DOI | MR | Zbl
Cité par Sources :