Higgs bundles and representation spaces associated to morphisms
Archivum mathematicum, Tome 51 (2015) no. 4, pp. 191-199
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset\, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\to Y$ an algebraic morphism, such that $\pi_1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi_1(X)\to\pi_1(Y)$ is surjective. Define \begin{align*} {\mathcal R }^f\big(\pi_1(X), G\big)= \{\rho \in \operatorname{Hom}\big(\pi_1(X), G\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,,\\[6pt] {\mathcal R }^f\big(\pi_1(X), K\big)= \{\rho \in \operatorname{Hom}\big(\pi_1(X), K\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,, \end{align*} where $A\colon G\to \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient ${\mathcal R }^f(\pi_1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to ${\mathcal R }^f(\pi_1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.
Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset\, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\to Y$ an algebraic morphism, such that $\pi_1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi_1(X)\to\pi_1(Y)$ is surjective. Define \begin{align*} {\mathcal R }^f\big(\pi_1(X), G\big)= \{\rho \in \operatorname{Hom}\big(\pi_1(X), G\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,,\\[6pt] {\mathcal R }^f\big(\pi_1(X), K\big)= \{\rho \in \operatorname{Hom}\big(\pi_1(X), K\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,, \end{align*} where $A\colon G\to \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient ${\mathcal R }^f(\pi_1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to ${\mathcal R }^f(\pi_1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.
DOI :
10.5817/AM2015-4-191
Classification :
14J60
Keywords: Higgs bundle; flat connection; representation space; deformation retraction
Keywords: Higgs bundle; flat connection; representation space; deformation retraction
@article{10_5817_AM2015_4_191,
author = {Biswas, Indranil and Florentino, Carlos},
title = {Higgs bundles and representation spaces associated to morphisms},
journal = {Archivum mathematicum},
pages = {191--199},
year = {2015},
volume = {51},
number = {4},
doi = {10.5817/AM2015-4-191},
mrnumber = {3434602},
zbl = {06537724},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-191/}
}
TY - JOUR AU - Biswas, Indranil AU - Florentino, Carlos TI - Higgs bundles and representation spaces associated to morphisms JO - Archivum mathematicum PY - 2015 SP - 191 EP - 199 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-191/ DO - 10.5817/AM2015-4-191 LA - en ID - 10_5817_AM2015_4_191 ER -
Biswas, Indranil; Florentino, Carlos. Higgs bundles and representation spaces associated to morphisms. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 191-199. doi: 10.5817/AM2015-4-191
Cité par Sources :