Higgs bundles and representation spaces associated to morphisms
Archivum mathematicum, Tome 51 (2015) no. 4, pp. 191-199 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset\, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\to Y$ an algebraic morphism, such that $\pi_1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi_1(X)\to\pi_1(Y)$ is surjective. Define \begin{align*} {\mathcal R }^f\big(\pi_1(X), G\big)= \{\rho \in \operatorname{Hom}\big(\pi_1(X), G\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,,\\[6pt] {\mathcal R }^f\big(\pi_1(X), K\big)= \{\rho \in \operatorname{Hom}\big(\pi_1(X), K\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,, \end{align*} where $A\colon G\to \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient ${\mathcal R }^f(\pi_1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to ${\mathcal R }^f(\pi_1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.
Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset\, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\to Y$ an algebraic morphism, such that $\pi_1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi_1(X)\to\pi_1(Y)$ is surjective. Define \begin{align*} {\mathcal R }^f\big(\pi_1(X), G\big)= \{\rho \in \operatorname{Hom}\big(\pi_1(X), G\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,,\\[6pt] {\mathcal R }^f\big(\pi_1(X), K\big)= \{\rho \in \operatorname{Hom}\big(\pi_1(X), K\big) \mid A\circ\rho \ \text{ factors through }~ f_*\}\,, \end{align*} where $A\colon G\to \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient ${\mathcal R }^f(\pi_1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to ${\mathcal R }^f(\pi_1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.
DOI : 10.5817/AM2015-4-191
Classification : 14J60
Keywords: Higgs bundle; flat connection; representation space; deformation retraction
@article{10_5817_AM2015_4_191,
     author = {Biswas, Indranil and Florentino, Carlos},
     title = {Higgs bundles and representation spaces associated to morphisms},
     journal = {Archivum mathematicum},
     pages = {191--199},
     year = {2015},
     volume = {51},
     number = {4},
     doi = {10.5817/AM2015-4-191},
     mrnumber = {3434602},
     zbl = {06537724},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-191/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Florentino, Carlos
TI  - Higgs bundles and representation spaces associated to morphisms
JO  - Archivum mathematicum
PY  - 2015
SP  - 191
EP  - 199
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-191/
DO  - 10.5817/AM2015-4-191
LA  - en
ID  - 10_5817_AM2015_4_191
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Florentino, Carlos
%T Higgs bundles and representation spaces associated to morphisms
%J Archivum mathematicum
%D 2015
%P 191-199
%V 51
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-4-191/
%R 10.5817/AM2015-4-191
%G en
%F 10_5817_AM2015_4_191
Biswas, Indranil; Florentino, Carlos. Higgs bundles and representation spaces associated to morphisms. Archivum mathematicum, Tome 51 (2015) no. 4, pp. 191-199. doi: 10.5817/AM2015-4-191

[1] Anchouche, B., Biswas, I.: Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold. Amer. J. Math. 123 (2001), 207–228. | DOI | MR | Zbl

[2] Biswas, I., Bruzzo, U.: On semistable principal bundles over a complex projective manifold. II. Geom. Dedicata 146 (2010), 27–41. | DOI | MR | Zbl

[3] Biswas, I., Florentino, C.: Character varieties of virtually nilpotent Kähler groups and $G$–Higgs bundles. Ann. Inst. Fourier (Grenoble), to appear, arXiv:1405.0610.

[4] Biswas, I., Florentino, C.: Commuting elements in reductive groups and Higgs bundles on Abelian varieties. J. Algebra 388 (2013), 194–202. | DOI | MR | Zbl

[5] Biswas, I., Gómez, T.L.: Connections and Higgs fields on a principal bundle. Ann. Global Anal. Geom. 33 (2008), 19–46. | DOI | MR | Zbl

[6] Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups. Mem. Amer. Math. Soc. 157 (2002), no. 747. | MR | Zbl

[7] Florentino, C., Lawton, S.: Topology of character varieties of Abelian groups. preprint arXiv:1301.7616. | MR | Zbl

[8] Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. preprint arXiv hep-th/9902029, 1999. | MR | Zbl

[9] Katzarkov, L., Pantev, T.: Representations of fundamental groups whose Higgs bundles are pullbacks. J. Differential Geom. 39 (1994), 103–121. | MR | Zbl

[10] Pettet, A., Souto, J.: Commuting tuples in reductive groups and their maximal compact subgroups. Geom. Topol. 17 (2013), 2513–2593. | DOI | MR | Zbl

[11] Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. | DOI | MR | Zbl

Cité par Sources :