Keywords: analytic torsion; contact torsion; Chern-Simons theory; Sasakian three-manifold; quantum field theory
@article{10_5817_AM2015_3_175,
author = {McLellan, B.D.K.},
title = {Abelian analytic torsion and symplectic volume},
journal = {Archivum mathematicum},
pages = {175--187},
year = {2015},
volume = {51},
number = {3},
doi = {10.5817/AM2015-3-175},
mrnumber = {3397270},
zbl = {06487029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-175/}
}
McLellan, B.D.K. Abelian analytic torsion and symplectic volume. Archivum mathematicum, Tome 51 (2015) no. 3, pp. 175-187. doi: 10.5817/AM2015-3-175
[1] Atiyah, M.F., Patodi, V., Singer, I.: Spectral asymmetry and Riemannian geometry, I. Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. | DOI | MR | Zbl
[2] Atiyah, M.F., Patodi, V., Singer, I.: Spectral asymmetry and Riemannian geometry, II. Math. Proc. Cambridge Philos. Soc. 78 (1975), 405–432. | DOI | MR | Zbl
[3] Beasley, C., Witten, E.: Non-abelian localization for Chern-Simons theory. J. Differential Geom. 70 (2005), 183–323. | MR | Zbl
[4] Belov, D. M., Moore, G.W.: Classification of abelian spin Chern-Simons theories. hep-th/0505235, (2005).
[5] Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, 2008. | MR | Zbl
[6] Braverman, M.: New proof of the Cheeger-Müller theorem. Ann. Global Anal. Geom. 23 (1) (2002), 77–92. | DOI | MR
[7] Cheeger, J.: Analytic torsion and the heat equation. Ann. of Math. 109 (1979), 259–300. | DOI | MR | Zbl
[8] Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Comm. Math. Phys. 129 (1990), 486–522. | DOI | MR | Zbl
[9] Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds. Progr. Math., vol. 246, Birkhäuser, Basel, 2006. | MR | Zbl
[10] Furata, M., Steer, B.: Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points. Adv. Math. 96 (1) (1992), 38–102. | DOI | MR
[11] Jeffrey, L.C., McLellan, B.D.K.: Non-abelian localization for $U(1)$ Chern-Simons theory. Geometric Aspects of Analysis and Mechanics, Conf. Proc. (in honour of the $65^{th}$ birthday of Hans Duistermaat), Birkhäuser, 2009. | MR
[12] Kawasaki, T.: The Riemann-Roch theorem for complex V-manifolds. Osaka J. Math. 16 (1) (1979), 151–159. | MR | Zbl
[13] Kirk, P., Klassen, E.: Chern-Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of $T^{2}$. Comm. Math. Phys. 153 (3) (1993), 521–557. | DOI | MR
[14] McLellan, B.D.K.: Localization in abelian Chern-Simons theory. J. Math. Phys. 54 (2013), arXiv:1208.1724[math-ph]. | MR | Zbl
[15] Müller, W.: Analytic torsion and R-torsion on Reimannian manifolds. Adv. Math. 28 (1978), 233–305. | DOI
[16] Neumann, W.D., Raymond, F.: Seifert manifolds, plumbing, $\mu $-invariant and orientation reversing maps, Algebraic and geometric topology . Proc. Sympos., Univ. California, Santa Barbara, California, Lecture Notes in Math., 664, Springer, Berlin, (1978), 163–196, 1977. | DOI | MR
[17] Nicolaescu, L.I.: Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations. Comm. Anal. Geom. 8 (5) (2000), 1027–1096. | DOI | MR | Zbl
[18] Orlik, P.: Seifert Manifolds. Lecture Notes in Math., Springer-Verlag, Berlin, 1972. | MR | Zbl
[19] Orlik, P., Vogt, E., Zieschang, H.: Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten. Topology 6 (1967), 49–64. | DOI | MR | Zbl
[20] Prasolov, V.V., Sossinsky, A.B.: Knots, links, braids and 3-manifolds: An introduction to the new invariants in low-dimensional topology. Amer. Math. Soc. (1996), Vol. 154 of Translations of Mathematical Monographs. | MR
[21] Ray, D., Singer, I.: Analytic torsion. Proc. Sympos. Pure Math. 23 (1973), 167–182. | MR | Zbl
[22] Reidemeister, K.: Überdeckungen von Komplexen. J. Reine Angew. Math. 173 (1935), 164–173. | Zbl
[23] Rumin, M.: Formes différentielles sur les variétés de contact. J. Differential Geom. 39 (2) (1994), 281–330. | MR | Zbl
[24] Rumin, M., Seshadri, N.: Analytic torsions on contact manifolds. Ann. Inst. Fourier 62 (2012), 727–782. | DOI | MR | Zbl
[25] Schwarz, A.S.: The partition function of degenerate functional. Comm. Math. Phys. 67 (1979), 1–16. | DOI | MR
[26] Williams, F.L.: Lectures on zeta functions, L-functions and modular forms with some physical applications. A window into zeta and modular physics, MSRI Publications, 2010. | MR | Zbl
[27] Witten, E.: Supersymmetry and Morse theory. J. Differential Geom. 17 (1982), 661–692. | MR | Zbl
Cité par Sources :