Keywords: existence results; genus theory; nonlocal problems Kirchhoff equation; critical point theory
@article{10_5817_AM2015_3_163,
author = {Mokhtari, A. and Moussaoui, T. and O{\textquoteright}Regan, D.},
title = {Existence and multiplicity of solutions for a $p(x)${-Kirchhoff} type problem via variational techniques},
journal = {Archivum mathematicum},
pages = {163--173},
year = {2015},
volume = {51},
number = {3},
doi = {10.5817/AM2015-3-163},
mrnumber = {3397269},
zbl = {06487028},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-163/}
}
TY - JOUR AU - Mokhtari, A. AU - Moussaoui, T. AU - O’Regan, D. TI - Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques JO - Archivum mathematicum PY - 2015 SP - 163 EP - 173 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-163/ DO - 10.5817/AM2015-3-163 LA - en ID - 10_5817_AM2015_3_163 ER -
%0 Journal Article %A Mokhtari, A. %A Moussaoui, T. %A O’Regan, D. %T Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques %J Archivum mathematicum %D 2015 %P 163-173 %V 51 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-163/ %R 10.5817/AM2015-3-163 %G en %F 10_5817_AM2015_3_163
Mokhtari, A.; Moussaoui, T.; O’Regan, D. Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques. Archivum mathematicum, Tome 51 (2015) no. 3, pp. 163-173. doi: 10.5817/AM2015-3-163
[1] Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems. Cambridge Stud. Adv. Math., vol. 14, Cambridge Univ. Press, 2007. | MR | Zbl
[2] Antontsev, S.N., Rodrigues, J.F.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. (2005), 515–545. | MR
[3] Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII (N.S.) 52 (2006), 19–36. | MR | Zbl
[4] Castro, A.: Metodos variacionales y analisis functional no linear. X Colóquio Colombiano de Matematicas, 1980.
[5] Clarke, D.C.: A variant of the Lusternik-Schnirelman theory. Indiana Univ. Math. J. 22 (1972), 65–74. | DOI | MR
[6] Corrêa, F.J.S.A., Figueiredo, G.M.: On an elliptic equation of p-Kirchhoff-type via variational methods. Bull. Austral. Math. Soc. 74 (2006), 263–277. | DOI | MR | Zbl
[7] Corrêa, F.J.S.A., Figueiredo, G.M.: On a p-Kirchhoff equation via Krasnoselskii’s genus. Appl. Math. Lett. 22 ('2009), 819–822. | DOI | MR | Zbl
[8] Dai, G., Wei, J.: Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition. Nonlinear Anal. 73 (2010), 3420–3430. | DOI | MR | Zbl
[9] Diening, L., Harjulehto, P., Hast"o, P., Ružička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Math., vol. 2017, Springer, New York, 2011. | MR
[10] Fan, X.L., Zhao, D.: On the spaces $L^{p(x)}$ and $W^{m,p(x)}$. J. Math. Anal. Appl. 263 (2001), 424–446. | MR
[11] Kavian, O.: ‘Introduction ‘a la théorie des points critiques et applications aux problémes elliptiques. Springer-Verlag, 1993. | Zbl
[12] Kirchhoff, G.: Mechanik. Teubner, Leipzig, Germany, 1883.
[13] Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations. MacMillan, New York, 1964. | MR
[14] Peral, I.: Multiplicity of solutions for the p-Laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997.
[15] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations. Conference Board of the Mathematical Sciences, by the American Mathematical Society, Providence, Rhode Island, 1984. | MR
[16] Ružička, M.: Electro-rheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2000. | MR
[17] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978. | MR | Zbl
[18] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv. 9 (1987), 33–66. | DOI | MR | Zbl
Cité par Sources :