Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques
Archivum mathematicum, Tome 51 (2015) no. 3, pp. 163-173 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper discusses the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type problems with Dirichlet boundary data of the following form \[ {\left\rbrace \begin{array}{ll} -\Big (a+b\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\; dx\Big )\textrm{div}\big (|\nabla u|^{p(x)-2 } \nabla u\big )= f(x,u)\,, in \quad \Omega \\[6pt] u=0 on \quad \partial \Omega\,, \end{array}\right.} \] where $\Omega $ is a smooth open subset of $\mathbb{R}^N$ and $p\in C(\overline{\Omega })$ with $N
This paper discusses the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type problems with Dirichlet boundary data of the following form \[ {\left\rbrace \begin{array}{ll} -\Big (a+b\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\; dx\Big )\textrm{div}\big (|\nabla u|^{p(x)-2 } \nabla u\big )= f(x,u)\,, in \quad \Omega \\[6pt] u=0 on \quad \partial \Omega\,, \end{array}\right.} \] where $\Omega $ is a smooth open subset of $\mathbb{R}^N$ and $p\in C(\overline{\Omega })$ with $N $, $a$, $b$ are positive constants and $f\colon \overline{\Omega }\times \mathbb{R}\rightarrow \mathbb{R}$ is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.
DOI : 10.5817/AM2015-3-163
Classification : 34B27, 35B05, 35J60
Keywords: existence results; genus theory; nonlocal problems Kirchhoff equation; critical point theory
@article{10_5817_AM2015_3_163,
     author = {Mokhtari, A. and Moussaoui, T. and O{\textquoteright}Regan, D.},
     title = {Existence and multiplicity of solutions for a $p(x)${-Kirchhoff} type problem via variational techniques},
     journal = {Archivum mathematicum},
     pages = {163--173},
     year = {2015},
     volume = {51},
     number = {3},
     doi = {10.5817/AM2015-3-163},
     mrnumber = {3397269},
     zbl = {06487028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-163/}
}
TY  - JOUR
AU  - Mokhtari, A.
AU  - Moussaoui, T.
AU  - O’Regan, D.
TI  - Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques
JO  - Archivum mathematicum
PY  - 2015
SP  - 163
EP  - 173
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-163/
DO  - 10.5817/AM2015-3-163
LA  - en
ID  - 10_5817_AM2015_3_163
ER  - 
%0 Journal Article
%A Mokhtari, A.
%A Moussaoui, T.
%A O’Regan, D.
%T Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques
%J Archivum mathematicum
%D 2015
%P 163-173
%V 51
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-163/
%R 10.5817/AM2015-3-163
%G en
%F 10_5817_AM2015_3_163
Mokhtari, A.; Moussaoui, T.; O’Regan, D. Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques. Archivum mathematicum, Tome 51 (2015) no. 3, pp. 163-173. doi: 10.5817/AM2015-3-163

[1] Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems. Cambridge Stud. Adv. Math., vol. 14, Cambridge Univ. Press, 2007. | MR | Zbl

[2] Antontsev, S.N., Rodrigues, J.F.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. (2005), 515–545. | MR

[3] Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII (N.S.) 52 (2006), 19–36. | MR | Zbl

[4] Castro, A.: Metodos variacionales y analisis functional no linear. X Colóquio Colombiano de Matematicas, 1980.

[5] Clarke, D.C.: A variant of the Lusternik-Schnirelman theory. Indiana Univ. Math. J. 22 (1972), 65–74. | DOI | MR

[6] Corrêa, F.J.S.A., Figueiredo, G.M.: On an elliptic equation of p-Kirchhoff-type via variational methods. Bull. Austral. Math. Soc. 74 (2006), 263–277. | DOI | MR | Zbl

[7] Corrêa, F.J.S.A., Figueiredo, G.M.: On a p-Kirchhoff equation via Krasnoselskii’s genus. Appl. Math. Lett. 22 ('2009), 819–822. | DOI | MR | Zbl

[8] Dai, G., Wei, J.: Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition. Nonlinear Anal. 73 (2010), 3420–3430. | DOI | MR | Zbl

[9] Diening, L., Harjulehto, P., Hast"o, P., Ružička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Math., vol. 2017, Springer, New York, 2011. | MR

[10] Fan, X.L., Zhao, D.: On the spaces $L^{p(x)}$ and $W^{m,p(x)}$. J. Math. Anal. Appl. 263 (2001), 424–446. | MR

[11] Kavian, O.: ‘Introduction ‘a la théorie des points critiques et applications aux problémes elliptiques. Springer-Verlag, 1993. | Zbl

[12] Kirchhoff, G.: Mechanik. Teubner, Leipzig, Germany, 1883.

[13] Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations. MacMillan, New York, 1964. | MR

[14] Peral, I.: Multiplicity of solutions for the p-Laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997.

[15] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations. Conference Board of the Mathematical Sciences, by the American Mathematical Society, Providence, Rhode Island, 1984. | MR

[16] Ružička, M.: Electro-rheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2000. | MR

[17] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978. | MR | Zbl

[18] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv. 9 (1987), 33–66. | DOI | MR | Zbl

Cité par Sources :