Comments on the fractional parts of Pisot numbers
Archivum mathematicum, Tome 51 (2015) no. 3, pp. 153-161 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L(\theta ,\lambda )$ be the set of limit points of the fractional parts $\lbrace \lambda \theta ^{n}\rbrace $, $n=0,1,2, \dots $, where $\theta $ is a Pisot number and $\lambda \in \mathbb{Q}(\theta )$. Using a description of $L(\theta ,\lambda )$, due to Dubickas, we show that there is a sequence $(\lambda _{n})_{n\ge 0}$ of elements of $\mathbb{Q}(\theta )$ such that $\operatorname{Card}\,(L(\theta ,\lambda _{n})) \operatorname{Card}\,(L(\theta ,\lambda _{n+1}))$, $\forall $ $n\ge 0$. Also, we prove that the fractional parts of Pisot numbers, with a fixed degree greater than 1, are dense in the unit interval.
Let $L(\theta ,\lambda )$ be the set of limit points of the fractional parts $\lbrace \lambda \theta ^{n}\rbrace $, $n=0,1,2, \dots $, where $\theta $ is a Pisot number and $\lambda \in \mathbb{Q}(\theta )$. Using a description of $L(\theta ,\lambda )$, due to Dubickas, we show that there is a sequence $(\lambda _{n})_{n\ge 0}$ of elements of $\mathbb{Q}(\theta )$ such that $\operatorname{Card}\,(L(\theta ,\lambda _{n})) \operatorname{Card}\,(L(\theta ,\lambda _{n+1}))$, $\forall $ $n\ge 0$. Also, we prove that the fractional parts of Pisot numbers, with a fixed degree greater than 1, are dense in the unit interval.
DOI : 10.5817/AM2015-3-153
Classification : 11J71, 11R04, 11R06
Keywords: Pisot numbers; fractional parts; limit points
@article{10_5817_AM2015_3_153,
     author = {Za{\"\i}mi, Toufik and Selatnia, Mounia and Zekraoui, Hanifa},
     title = {Comments on the fractional parts of {Pisot} numbers},
     journal = {Archivum mathematicum},
     pages = {153--161},
     year = {2015},
     volume = {51},
     number = {3},
     doi = {10.5817/AM2015-3-153},
     mrnumber = {3397268},
     zbl = {06487027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-153/}
}
TY  - JOUR
AU  - Zaïmi, Toufik
AU  - Selatnia, Mounia
AU  - Zekraoui, Hanifa
TI  - Comments on the fractional parts of Pisot numbers
JO  - Archivum mathematicum
PY  - 2015
SP  - 153
EP  - 161
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-153/
DO  - 10.5817/AM2015-3-153
LA  - en
ID  - 10_5817_AM2015_3_153
ER  - 
%0 Journal Article
%A Zaïmi, Toufik
%A Selatnia, Mounia
%A Zekraoui, Hanifa
%T Comments on the fractional parts of Pisot numbers
%J Archivum mathematicum
%D 2015
%P 153-161
%V 51
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-153/
%R 10.5817/AM2015-3-153
%G en
%F 10_5817_AM2015_3_153
Zaïmi, Toufik; Selatnia, Mounia; Zekraoui, Hanifa. Comments on the fractional parts of Pisot numbers. Archivum mathematicum, Tome 51 (2015) no. 3, pp. 153-161. doi: 10.5817/AM2015-3-153

[1] Bertin, M.J., Decomps-Guilloux, A., Grandet-Hugo, M., Pathiaux-Delefosse, M., Schreiber, J.P.: Pisot and Salem numbers. Birkhäuser Verlag Basel, 1992. | MR

[2] Boyd, D.W.: Linear recurrence relations for some generalized Pisot sequences. Advances in Number Theory, Proc. of the 1991 CNTA Conference, Oxford University Press, 1993, pp. 333–340. | MR | Zbl

[3] Bugeaud, Y.: An introduction to diophantine approximation. Cambridge University Press, Cambridge, 2012. | MR

[4] Dubickas, A.: On the limit points of the fractional parts of powers of Pisot numbers. Arch. Math. (Brno) 42 (2006), 151–158. | MR | Zbl

[5] Marcus, D.: Number fields. Springer, Berlin, 1977, 3rd edition. | MR | Zbl

[6] Smyth, C.J.: The conjugates of algebraic integers. Amer. Math. Monthly 82 (86) (1975).

[7] Zaïmi, T.: Comments on the distribution modulo one of powers of Pisot and Salem numbers. Publ. Math. Debrecen 80 (2012), 417–426. | DOI | MR | Zbl

[8] Zaïmi, T.: On the spectra of Pisot numbers. Glasgow Math. J. 54 (2012), 127–132. | DOI | MR | Zbl

Cité par Sources :