Keywords: explicit bounds; integral inequality; dynamic equations; time scales
@article{10_5817_AM2015_3_143,
author = {Pachpatte, Deepak B.},
title = {Some dynamic inequalities applicable to partial integrodifferential equations on time scales},
journal = {Archivum mathematicum},
pages = {143--152},
year = {2015},
volume = {51},
number = {3},
doi = {10.5817/AM2015-3-143},
mrnumber = {3397267},
zbl = {06487026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-143/}
}
TY - JOUR AU - Pachpatte, Deepak B. TI - Some dynamic inequalities applicable to partial integrodifferential equations on time scales JO - Archivum mathematicum PY - 2015 SP - 143 EP - 152 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-143/ DO - 10.5817/AM2015-3-143 LA - en ID - 10_5817_AM2015_3_143 ER -
%0 Journal Article %A Pachpatte, Deepak B. %T Some dynamic inequalities applicable to partial integrodifferential equations on time scales %J Archivum mathematicum %D 2015 %P 143-152 %V 51 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-143/ %R 10.5817/AM2015-3-143 %G en %F 10_5817_AM2015_3_143
Pachpatte, Deepak B. Some dynamic inequalities applicable to partial integrodifferential equations on time scales. Archivum mathematicum, Tome 51 (2015) no. 3, pp. 143-152. doi: 10.5817/AM2015-3-143
[1] Agarwal, R.P., O’Regan, D., Saker, S.H.: Dynamic inequalities on time scales. Springer, 2014. | MR | Zbl
[2] Andras, S., Meszaros, A.: Wendroff type inequalities on time scales via Picard operators. Math. Inequal. Appl. 17 (1) (2013), 159–174. | MR | Zbl
[3] Bohner, M., Peterson, A.: Dynamic equations on time scales. Birkhauser Boston–Berlin, 2001. | MR | Zbl
[4] Bohner, M., Peterson, A.: Advances in dynamic equations on time scales. Birkhauser Boston–Berlin, 2003. | MR | Zbl
[5] Hilger, S.: Analysis on measure chain – A unified approch to continuous and discrete calculus. Results Math. 18 (1990), 18–56. | DOI | MR
[6] Menga, F., Shaoa, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 223 (2013), 444–451. | DOI | MR
[7] Pachpatte, D.B.: Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 7 (4) (2006), Article 143. | MR | Zbl
[8] Pachpatte, D.B.: Properties of solutions to nonlinear dynamic integral equations on time scales. Electron. J. Differential Equations 2008 (2008), no. 130, 1–8. | MR | Zbl
[9] Pachpatte, D.B.: Integral inequalities for partial dynamic equations on time scales. Electron. J. Differential Equations 2012 (2012), no. 50, 1–7. | MR | Zbl
[10] Pachpatte, D.B.: Properties of some partial dynamic equations on time scales. Internat. J. Partial Differential Equations 2013 (2013), 9pp., Art. ID 345697.
[11] Saker, S. H.: Some nonlinear dynamic inequalities on time scales and applications. J. Math. Inequalities 4 (2010), 561–579. | DOI | MR | Zbl
[12] Saker, S.H.: Bounds of double integral dynamic inequalities in two independent variables on time scales. Discrete Dynamics in Nature and Society (2011), Art. 732164. | MR | Zbl
[13] Saker, S.H.: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14 (2011), 633–645. | MR | Zbl
[14] Sun, Y., Hassan, T.: Some nonlinear dynamic integral inequalities on time scales. Appl. Math. Comput. 220 (2013), 221–225. | DOI | MR
Cité par Sources :