Keywords: metric space; fixed point; $F$-contraction; $\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type
@article{10_5817_AM2015_3_129,
author = {Arshad, Muhammad and Ameer, Eskandar and Hussain, Aftab},
title = {Hardy-Rogers-type fixed point theorems for $\alpha $-$GF$-contractions},
journal = {Archivum mathematicum},
pages = {129--141},
year = {2015},
volume = {51},
number = {3},
doi = {10.5817/AM2015-3-129},
mrnumber = {3397266},
zbl = {06487025},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-129/}
}
TY - JOUR AU - Arshad, Muhammad AU - Ameer, Eskandar AU - Hussain, Aftab TI - Hardy-Rogers-type fixed point theorems for $\alpha $-$GF$-contractions JO - Archivum mathematicum PY - 2015 SP - 129 EP - 141 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-129/ DO - 10.5817/AM2015-3-129 LA - en ID - 10_5817_AM2015_3_129 ER -
%0 Journal Article %A Arshad, Muhammad %A Ameer, Eskandar %A Hussain, Aftab %T Hardy-Rogers-type fixed point theorems for $\alpha $-$GF$-contractions %J Archivum mathematicum %D 2015 %P 129-141 %V 51 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-3-129/ %R 10.5817/AM2015-3-129 %G en %F 10_5817_AM2015_3_129
Arshad, Muhammad; Ameer, Eskandar; Hussain, Aftab. Hardy-Rogers-type fixed point theorems for $\alpha $-$GF$-contractions. Archivum mathematicum, Tome 51 (2015) no. 3, pp. 129-141. doi: 10.5817/AM2015-3-129
[1] Abdeljawad, T.: Meir-Keeler $\alpha $-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. (2013). DOI: | DOI | MR | Zbl
[2] Arshad, M., Fahimuddin, , Shoaib, A., Hussain, A.: Fixed point results for $\alpha $-$\psi $-locally graphic contraction in dislocated quasi metric spaces. Mathematical Sciences (2014), 7 pp. DOI: | DOI
[3] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 3 (1922), 133–181.
[4] Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267–273. | DOI | MR | Zbl
[5] Cosentino, M., Vetro, P.: Fixed point results for $F$-contractive mappings of Hardy-Rogers-type. Filomat 28 (4) (2014), 715–722. DOI: 1404715C | DOI | DOI | MR
[6] Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37 (1962), 74–79. | DOI | MR | Zbl
[7] Fisher, B.: Set-valued mappings on metric spaces. Fund. Math. 112 (2) (1981), 141–145. | MR | Zbl
[8] Geraghty, M.: On contractive mappings. Proc. Amer. Math. Soc. 40 (1973), 604–608. | DOI | MR | Zbl
[9] Hussain, N., Al-Mezel, S., Salimi, P.: Fixed points for $\alpha $-$\psi $-graphic contractions with application to integral equations. Abstr. Appl. Anal. (2013), Article 575869. | MR
[10] Hussain, N., Arshad, M., Shoaib, A., Fahimuddin, : Common fixed point results for $\alpha $-$\psi $-contractions on a metric space endowed with graph. J. Inequal. Appl. 136 (2014). | MR | Zbl
[11] Hussain, N., Karapınar, E., Salimi, P., Akbar, F.: $\alpha $-admissible mappings and related fixed point theorems. J. Inequal. Appl. 114 (2013), 1–11. | MR | Zbl
[12] Hussain, N., Karapınar, E., Salimi, P., Vetro, P.: Fixed point results for $G^{m}$-Meir-Keeler contractive and $G$-$(\alpha ,\psi )$-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 34 (2013). | Zbl
[13] Hussain, N., Kutbi, M.A., Salimi, P.: Fixed point theory in $\alpha $-complete metric spaces with applications. Abstr. Appl. Anal. (2014), 11pp., Article ID 280817. | MR
[14] Hussain, N., Salimi, P.: Suzuki-Wardowski type fixed point theorems for $\alpha $-$GF$-contractions. Taiwanese J. Math. 18 (6) (2014), 1879–1895. DOI: | DOI | MR
[15] Hussain, N., Salimi, P., Latif, A.: Fixed point results for single and set-valued $\alpha $-$\eta $-$\psi $-contractive mappings. Fixed Point Theory Appl. 212 (2013). | MR | Zbl
[16] Karapınar, E., Samet, B.: Generalized $(\alpha -\psi )$ contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. (2012), Article ID 793486. | MR | Zbl
[17] Kutbi, M.A., Arshad, M., Hussain, A.: On modified $\alpha $-$\eta $-contractive mappings. Abstr. Appl. Anal. 2014 (2014), 7pp., Article ID 657858. | MR
[18] Nadler, S.B.: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475–488. | DOI | MR
[19] Piri, H., Kumam, P.: Some fixed point theorems concerning $F$-contraction in complete metric spaces. Fixed Point Theory Appl. 210 (2014). | MR
[20] Salimi, P., Latif, A., Hussain, N.: Modified $\alpha $-$\psi $-contractive mappings with applications. Fixed Point Theory Appl. 151 (2013). | MR | Zbl
[21] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha $-$\psi $-contractive type mappings. Nonlinear Anal. 75 (2012), 2154–2165. | DOI | MR | Zbl
[22] Secelean, N.A.: Iterated function systems consisting of $F$-contractions. Fixed Point Theory Appl. (2013), Article ID 277 (2013). DOI: | DOI | MR
[23] Sgroi, M., Vetro, C.: Multi-valued $F$-contractions and the solution of certain functional and integral equations. Filomat 27 (7) (2013), 1259–1268. | DOI | MR
[24] Wardowski, D.: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. (2012), Article ID 94 (2012). | MR
Cité par Sources :