Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$
Archivum mathematicum, Tome 51 (2015) no. 2, pp. 77-85 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers.
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers.
DOI : 10.5817/AM2015-2-77
Classification : 39A20, 39A21, 39A23, 39A30
Keywords: difference equation; periodic solution; convergence
@article{10_5817_AM2015_2_77,
     author = {Abo-Zeid, Raafat},
     title = {Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$},
     journal = {Archivum mathematicum},
     pages = {77--85},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.5817/AM2015-2-77},
     mrnumber = {3367094},
     zbl = {06487022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/}
}
TY  - JOUR
AU  - Abo-Zeid, Raafat
TI  - Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$
JO  - Archivum mathematicum
PY  - 2015
SP  - 77
EP  - 85
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/
DO  - 10.5817/AM2015-2-77
LA  - en
ID  - 10_5817_AM2015_2_77
ER  - 
%0 Journal Article
%A Abo-Zeid, Raafat
%T Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$
%J Archivum mathematicum
%D 2015
%P 77-85
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/
%R 10.5817/AM2015-2-77
%G en
%F 10_5817_AM2015_2_77
Abo-Zeid, Raafat. Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$. Archivum mathematicum, Tome 51 (2015) no. 2, pp. 77-85. doi: 10.5817/AM2015-2-77

[1] Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation. Bull. Allahabad Math. Soc. 2 (2) (2010), 341–351. | MR | Zbl

[2] Abo-Zeid, R.: Global asymptotic stability of a second order rational difference equation. J. Appl. Math. & Inform. 2 (3) (2010), 797–804. | MR | Zbl

[3] Agarwal, R.P.: Difference Equations and Inequalities. first ed., Marcel Decker, 1992. | MR | Zbl

[4] Al-Shabi, M.A., Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation. Appl. Math. Sci. 4 (17) (2010), 839–847. | MR | Zbl

[5] Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC Boca Raton, 2008. | MR | Zbl

[6] Elsayed, E.M.: On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5} }$. Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657–1664. | MR | Zbl

[7] Elsayed, E.M.: On the solution of some difference equations. European J. Pure Appl. Math. 4 (2011), 287–303. | MR

[8] Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC, 2005. | MR | Zbl

[9] Karakostas, G.: Convergence of a difference equation via the full limiting sequences method. Differential Equations Dynam. Systems 1 (4) (1993), 289–294. | MR | Zbl

[10] Karatas, R., Cinar, C., Simsek, D.: On the positive solution of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5} }$. Int. J. Contemp. Math. Sciences 1 (10) (2006), 495–500. | MR

[11] Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic, Dordrecht, 1993. | MR | Zbl

[12] Kruse, N., Nesemann, T.: Global asymptotic stability in some discrete dynamical systems. J. Math. Anal. Appl. 235 (1) (1999), 151–158. | DOI | MR | Zbl

[13] Kulenović, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC Boca Raton, 2002. | MR | Zbl

[14] Levy, H., Lessman, F.: Finite Difference Equations. Dover, New York, NY, USA, 1992. | MR

[15] Sedaghat, H.: Global behaviours of rational difference equations of orders two and three with quadratic terms. J. Differ. Equations Appl. 15 (3) (2009), 215–224. | DOI | MR | Zbl

[16] Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1}x_{n-3}}$. Int. J. Pure Appl. Math. 28 (1) (2006), 117–124. | MR | Zbl

[17] Simsek, D., Cinar, C., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1} }$. Int. J. Contemp. Math. Sciences 1 (10) (2006), 475–480. | MR | Zbl

[18] Stević, S.: More on a rational recurrence relation. Appl. Math. E-Notes 4 (2004), 80–84. | MR | Zbl

[19] Stević, S.: On positive solutions of a $(k +1)$th order difference equation. Appl. Math. Lett. 19 (5) (2006), 427–431. | DOI | MR | Zbl

Cité par Sources :