Keywords: difference equation; periodic solution; convergence
@article{10_5817_AM2015_2_77,
author = {Abo-Zeid, Raafat},
title = {Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$},
journal = {Archivum mathematicum},
pages = {77--85},
year = {2015},
volume = {51},
number = {2},
doi = {10.5817/AM2015-2-77},
mrnumber = {3367094},
zbl = {06487022},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/}
}
TY - JOUR
AU - Abo-Zeid, Raafat
TI - Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$
JO - Archivum mathematicum
PY - 2015
SP - 77
EP - 85
VL - 51
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/
DO - 10.5817/AM2015-2-77
LA - en
ID - 10_5817_AM2015_2_77
ER -
Abo-Zeid, Raafat. Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$. Archivum mathematicum, Tome 51 (2015) no. 2, pp. 77-85. doi: 10.5817/AM2015-2-77
[1] Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation. Bull. Allahabad Math. Soc. 2 (2) (2010), 341–351. | MR | Zbl
[2] Abo-Zeid, R.: Global asymptotic stability of a second order rational difference equation. J. Appl. Math. & Inform. 2 (3) (2010), 797–804. | MR | Zbl
[3] Agarwal, R.P.: Difference Equations and Inequalities. first ed., Marcel Decker, 1992. | MR | Zbl
[4] Al-Shabi, M.A., Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation. Appl. Math. Sci. 4 (17) (2010), 839–847. | MR | Zbl
[5] Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC Boca Raton, 2008. | MR | Zbl
[6] Elsayed, E.M.: On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5} }$. Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657–1664. | MR | Zbl
[7] Elsayed, E.M.: On the solution of some difference equations. European J. Pure Appl. Math. 4 (2011), 287–303. | MR
[8] Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC, 2005. | MR | Zbl
[9] Karakostas, G.: Convergence of a difference equation via the full limiting sequences method. Differential Equations Dynam. Systems 1 (4) (1993), 289–294. | MR | Zbl
[10] Karatas, R., Cinar, C., Simsek, D.: On the positive solution of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5} }$. Int. J. Contemp. Math. Sciences 1 (10) (2006), 495–500. | MR
[11] Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic, Dordrecht, 1993. | MR | Zbl
[12] Kruse, N., Nesemann, T.: Global asymptotic stability in some discrete dynamical systems. J. Math. Anal. Appl. 235 (1) (1999), 151–158. | DOI | MR | Zbl
[13] Kulenović, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC Boca Raton, 2002. | MR | Zbl
[14] Levy, H., Lessman, F.: Finite Difference Equations. Dover, New York, NY, USA, 1992. | MR
[15] Sedaghat, H.: Global behaviours of rational difference equations of orders two and three with quadratic terms. J. Differ. Equations Appl. 15 (3) (2009), 215–224. | DOI | MR | Zbl
[16] Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1}x_{n-3}}$. Int. J. Pure Appl. Math. 28 (1) (2006), 117–124. | MR | Zbl
[17] Simsek, D., Cinar, C., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1} }$. Int. J. Contemp. Math. Sciences 1 (10) (2006), 475–480. | MR | Zbl
[18] Stević, S.: More on a rational recurrence relation. Appl. Math. E-Notes 4 (2004), 80–84. | MR | Zbl
[19] Stević, S.: On positive solutions of a $(k +1)$th order difference equation. Appl. Math. Lett. 19 (5) (2006), 427–431. | DOI | MR | Zbl
Cité par Sources :