Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_5817_AM2015_2_77, author = {Abo-Zeid, Raafat}, title = {Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$}, journal = {Archivum mathematicum}, pages = {77--85}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2015}, doi = {10.5817/AM2015-2-77}, mrnumber = {3367094}, zbl = {06487022}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/} }
TY - JOUR AU - Abo-Zeid, Raafat TI - Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$ JO - Archivum mathematicum PY - 2015 SP - 77 EP - 85 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/ DO - 10.5817/AM2015-2-77 LA - en ID - 10_5817_AM2015_2_77 ER -
%0 Journal Article %A Abo-Zeid, Raafat %T Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$ %J Archivum mathematicum %D 2015 %P 77-85 %V 51 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/ %R 10.5817/AM2015-2-77 %G en %F 10_5817_AM2015_2_77
Abo-Zeid, Raafat. Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$. Archivum mathematicum, Tome 51 (2015) no. 2, pp. 77-85. doi : 10.5817/AM2015-2-77. http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/
Cité par Sources :