Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$
Archivum mathematicum, Tome 51 (2015) no. 2, pp. 77-85
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers.
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers.
DOI :
10.5817/AM2015-2-77
Classification :
39A20, 39A21, 39A23, 39A30
Keywords: difference equation; periodic solution; convergence
Keywords: difference equation; periodic solution; convergence
@article{10_5817_AM2015_2_77,
author = {Abo-Zeid, Raafat},
title = {Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$},
journal = {Archivum mathematicum},
pages = {77--85},
year = {2015},
volume = {51},
number = {2},
doi = {10.5817/AM2015-2-77},
mrnumber = {3367094},
zbl = {06487022},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/}
}
TY - JOUR
AU - Abo-Zeid, Raafat
TI - Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$
JO - Archivum mathematicum
PY - 2015
SP - 77
EP - 85
VL - 51
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-77/
DO - 10.5817/AM2015-2-77
LA - en
ID - 10_5817_AM2015_2_77
ER -
Abo-Zeid, Raafat. Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$. Archivum mathematicum, Tome 51 (2015) no. 2, pp. 77-85. doi: 10.5817/AM2015-2-77
Cité par Sources :