Integrable solutions for implicit fractional order functional differential equations with infinite delay
Archivum mathematicum, Tome 51 (2015) no. 2, pp. 67-76
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the existence of integrable solutions for initial value problem for implicit fractional order functional differential equations with infinite delay. Our results are based on Schauder type fixed point theorem and the Banach contraction principle fixed point theorem.
In this paper we study the existence of integrable solutions for initial value problem for implicit fractional order functional differential equations with infinite delay. Our results are based on Schauder type fixed point theorem and the Banach contraction principle fixed point theorem.
DOI : 10.5817/AM2015-2-67
Classification : 26A33, 34A08, 34K37
Keywords: implicit fractional-order differential equation; Caputo fractional derivative, integrable solution; existence fixed point; infinite delay
@article{10_5817_AM2015_2_67,
     author = {Benchohra, Mouffak and Souid, Mohammed Said},
     title = {Integrable solutions for implicit fractional order functional differential equations with infinite delay},
     journal = {Archivum mathematicum},
     pages = {67--76},
     year = {2015},
     volume = {51},
     number = {2},
     doi = {10.5817/AM2015-2-67},
     mrnumber = {3367093},
     zbl = {06487021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-67/}
}
TY  - JOUR
AU  - Benchohra, Mouffak
AU  - Souid, Mohammed Said
TI  - Integrable solutions for implicit fractional order functional differential equations with infinite delay
JO  - Archivum mathematicum
PY  - 2015
SP  - 67
EP  - 76
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-67/
DO  - 10.5817/AM2015-2-67
LA  - en
ID  - 10_5817_AM2015_2_67
ER  - 
%0 Journal Article
%A Benchohra, Mouffak
%A Souid, Mohammed Said
%T Integrable solutions for implicit fractional order functional differential equations with infinite delay
%J Archivum mathematicum
%D 2015
%P 67-76
%V 51
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-2-67/
%R 10.5817/AM2015-2-67
%G en
%F 10_5817_AM2015_2_67
Benchohra, Mouffak; Souid, Mohammed Said. Integrable solutions for implicit fractional order functional differential equations with infinite delay. Archivum mathematicum, Tome 51 (2015) no. 2, pp. 67-76. doi: 10.5817/AM2015-2-67

[1] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York, 2012. | MR

[2] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Avanced Fractional Differential and Integral Equations. Nova Science Publishers, New York, 2015. | MR

[3] Agarwal, R.P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional derivative. Adv. Differential Equations 2009 (2009), 1–47, ID 981728. | DOI | MR | Zbl

[4] Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (3) (2010), 973–1033. | DOI | MR

[5] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York, 2012. | MR | Zbl

[6] Belarbi, A., Benchohra, M., Ouahab, A.: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. Appl. Anal. 85 (2006), 1459–1470. | DOI | MR | Zbl

[7] Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order. Surveys Math. Appl. 3 (2008), 1–12. | MR | Zbl

[8] Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 71 (2009), 2391–2396. | MR

[9] Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for functional differential equations of fractional order. J. Math. Anal. Appl. 338 (2008), 1340–1350. | DOI | MR

[10] Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, 1985. | MR | Zbl

[11] El-Sayed, A.M.A., Abd El-Salam, Sh.A.: $L^p$-solution of weighted Cauchy-type problem of a differ-integral functional equation. Intern. J. Nonlinear Sci. 5 (2008), 281–288. | MR | Zbl

[12] El-Sayed, A.M.M., Hashem, H.H.G.: Integrable and continuous solutions of a nonlinear quadratic integral equation. Electron. J. Qual. Theory Differ. Equ. 25) (2008), 1–10. | DOI | MR | Zbl

[13] Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21 (1978), 11–41. | MR | Zbl

[14] Hale, J.K., Lunel, S M.V.: Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993. | MR | Zbl

[15] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. | MR | Zbl

[16] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Springer-Verlag, Berlin, 1991. | MR | Zbl

[17] Kappel, F., Schappacher, W.: Some considerations to the fundamental theory of infinite delay equations. J. Differential Equations 37 (1980), 141–183. | DOI | MR | Zbl

[18] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. | MR | Zbl

[19] Lakshmikantham, V., Leela, S., Vasundhara, J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, 2009. | Zbl

[20] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. An introduction to mathematical models . Imperial College Press, London, 2010. | MR | Zbl

[21] Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering, vol. 84, Springer, Dordrecht, 2011. | DOI | MR | Zbl

[22] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. | MR | Zbl

[23] Schumacher, K.: Existence and continuous dependence for differential equations with unbounded delay. Arch. Ration. Mech. Anal. 64 (1978), 315–335. | MR

[24] Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing, 2010. | MR

Cité par Sources :