Riemannian foliations with parallel or harmonic basic forms
Archivum mathematicum, Tome 51 (2015) no. 1, pp. 51-65 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.
In this paper, we consider a Riemannian foliation that admits a nontrivial parallel or harmonic basic form. We estimate the norm of the O’Neill tensor in terms of the curvature data of the whole manifold. Some examples are then given.
DOI : 10.5817/AM2015-1-51
Classification : 53C12, 53C20, 53C24, 57R30
Keywords: Riemannian foliation; parallel and harmonic basic forms; O’Neill tensor
@article{10_5817_AM2015_1_51,
     author = {El Chami, Fida and Habib, Georges and Nakad, Roger},
     title = {Riemannian foliations with parallel or harmonic basic forms},
     journal = {Archivum mathematicum},
     pages = {51--65},
     year = {2015},
     volume = {51},
     number = {1},
     doi = {10.5817/AM2015-1-51},
     mrnumber = {3338765},
     zbl = {06487020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-51/}
}
TY  - JOUR
AU  - El Chami, Fida
AU  - Habib, Georges
AU  - Nakad, Roger
TI  - Riemannian foliations with parallel or harmonic basic forms
JO  - Archivum mathematicum
PY  - 2015
SP  - 51
EP  - 65
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-51/
DO  - 10.5817/AM2015-1-51
LA  - en
ID  - 10_5817_AM2015_1_51
ER  - 
%0 Journal Article
%A El Chami, Fida
%A Habib, Georges
%A Nakad, Roger
%T Riemannian foliations with parallel or harmonic basic forms
%J Archivum mathematicum
%D 2015
%P 51-65
%V 51
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-51/
%R 10.5817/AM2015-1-51
%G en
%F 10_5817_AM2015_1_51
El Chami, Fida; Habib, Georges; Nakad, Roger. Riemannian foliations with parallel or harmonic basic forms. Archivum mathematicum, Tome 51 (2015) no. 1, pp. 51-65. doi: 10.5817/AM2015-1-51

[1] El Soufi, A., Petit, R.: Géométrie des sous-variétés admettant une structure kählérienne ou un second nombre de Betti non nul. Actes de Congrès de Géométrie d'Oran, 1989, p. 17 pp.

[2] Gromoll, D., Grove, K.: The low dimensional metric foliations of Euclidean spheres. J. Differential Geom. 28 (1988), 143–156. | MR | Zbl

[3] Grosjean, J.–F.: Minimal submanifolds with a parallel or a harmonic $p$–form. J. Geom. Phys. 51 (2004), 211–228. | DOI | MR | Zbl

[4] Habib, G., Richardson, K: Modified differentials and basic cohomology for Riemannian foliations. J. Geom. Anal. 23 (2013), 1314–1342. | DOI | MR | Zbl

[5] Hobum, K., Tondeur, P.: Riemannian foliations on manifolds with non-negative curvature. Manuscripta Math. 74 (1992), 39–45. | DOI | MR | Zbl

[6] Leung, P.F.: Minimal submanifolds in a sphere. Math. Z. 183 (1983), 75–86. | DOI | MR | Zbl

[7] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459–469. | DOI | MR

[8] Ranjan, A.: On a remark of O’Neill. Duke Math. J. 53 (1981), 363–373. | MR

[9] Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. of Math. (2) 69 (1959), 119–132. | DOI | MR | Zbl

[10] Tondeur, P.: Geometry of Foliations. Birkhäuser, Boston, 1997. | MR | Zbl

Cité par Sources :