Invariants of complex structures on nilmanifolds
Archivum mathematicum, Tome 51 (2015) no. 1, pp. 27-50 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(N, J)$ be a simply connected $2n$-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on $N$ compatible with $J$ to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving rise to a great deal of invariants. We show how to use a Riemannian invariant: the eigenvalues of the Ricci operator, polynomial invariants and discrete invariants to give an alternative proof of the pairwise non-isomorphism between the structures which have appeared in the classification of abelian complex structures on 6-dimensional nilpotent Lie algebras given in [1]. We also present some continuous families in dimension 8.
Let $(N, J)$ be a simply connected $2n$-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on $N$ compatible with $J$ to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving rise to a great deal of invariants. We show how to use a Riemannian invariant: the eigenvalues of the Ricci operator, polynomial invariants and discrete invariants to give an alternative proof of the pairwise non-isomorphism between the structures which have appeared in the classification of abelian complex structures on 6-dimensional nilpotent Lie algebras given in [1]. We also present some continuous families in dimension 8.
DOI : 10.5817/AM2015-1-27
Classification : 22E25, 32Q60, 37J15, 53C15, 53C30
Keywords: complex; nilmanifolds; nilpotent Lie groups; minimal metrics; Pfaffian forms
@article{10_5817_AM2015_1_27,
     author = {Rodr{\'\i}guez Valencia, Edwin Alejandro},
     title = {Invariants of complex structures on nilmanifolds},
     journal = {Archivum mathematicum},
     pages = {27--50},
     year = {2015},
     volume = {51},
     number = {1},
     doi = {10.5817/AM2015-1-27},
     mrnumber = {3338764},
     zbl = {06487019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-27/}
}
TY  - JOUR
AU  - Rodríguez Valencia, Edwin Alejandro
TI  - Invariants of complex structures on nilmanifolds
JO  - Archivum mathematicum
PY  - 2015
SP  - 27
EP  - 50
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-27/
DO  - 10.5817/AM2015-1-27
LA  - en
ID  - 10_5817_AM2015_1_27
ER  - 
%0 Journal Article
%A Rodríguez Valencia, Edwin Alejandro
%T Invariants of complex structures on nilmanifolds
%J Archivum mathematicum
%D 2015
%P 27-50
%V 51
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-27/
%R 10.5817/AM2015-1-27
%G en
%F 10_5817_AM2015_1_27
Rodríguez Valencia, Edwin Alejandro. Invariants of complex structures on nilmanifolds. Archivum mathematicum, Tome 51 (2015) no. 1, pp. 27-50. doi: 10.5817/AM2015-1-27

[1] Andrada, A., Barberis, M.L., Dotti, I.G.: Classification of abelian complex structures on 6-dimensional Lie algebras. J. London Math. Soc. 83 (1) (2011), 232–255. | DOI | MR | Zbl

[2] Ceballos, M., Otal, A., Ugarte, L., Villacampa, R.: Classification of complex structures on 6-dimensional nilpotent Lie algebras. arXiv:math.DG/1111.5873.

[3] Cordero, L.A., Fernández, M., Ugarte, L.: Abelian complex structures on 6-dimensional compact nilmanifolds. Comment. Math. Univ. Carolin. 43 (2) (2002), 215–229. | MR | Zbl

[4] Dolgachev, I.: Lectures on invariant theory. London Math. Soc. Lecture Note Ser. 296 (2003), 1–220. | MR | Zbl

[5] Galitski, L.Yu., Timashev, D.A.: On classification of metabelian Lie algebras. J. Lie Theory 9 (1999), 125–156. | MR | Zbl

[6] Lauret, J.: Minimal metrics on nilmanifolds. Differential geometry and its applications, Matfyzpress, Prague, 2005, pp. 79–97. | MR | Zbl

[7] Lauret, J.: A canonical compatible metric for geometric structures on nilmanifolds. Ann. Global Anal. Geom. 30 (2006), 107–138. | DOI | MR | Zbl

[8] Lauret, J.: Rational forms of nilpotent Lie algebras and Anosov diffeomorphisms. Monatsh. Math. 155 (2008), 15–30. | DOI | MR | Zbl

[9] Lauret, J.: Einstein solvmanifolds and nilsolitons. Contemp. Math. 491 (2009), 1–35. | DOI | MR | Zbl

[10] Lauret, J.: Einstein solvmanifolds are standard. Ann. of Math. (2) 172 (2010), 1859–1877. | MR | Zbl

[11] Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157 (2001), 311–333. | DOI | MR | Zbl

Cité par Sources :