Keywords: inverse categories; inverse monoids; split idempotents; pointed sets; annihilators; exact sequences
@article{10_5817_AM2015_1_13,
author = {Schwab, Emil and Schwab, Emil Daniel},
title = {On inverse categories with split idempotents},
journal = {Archivum mathematicum},
pages = {13--25},
year = {2015},
volume = {51},
number = {1},
doi = {10.5817/AM2015-1-13},
mrnumber = {3338763},
zbl = {06487018},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-13/}
}
Schwab, Emil; Schwab, Emil Daniel. On inverse categories with split idempotents. Archivum mathematicum, Tome 51 (2015) no. 1, pp. 13-25. doi: 10.5817/AM2015-1-13
[1] Clifford, A.H.: A class of d-simple semigroups. Amer. J. Math. 75 (1953), 547–556. | DOI | MR | Zbl
[2] Jones, D.G., Lawson, M.V.: Graph inverse semigroups: their characterization and completion. J. Algebra 409 (2014), 444–473. | DOI | MR
[3] Kastl, J.: Inverse categories. Studien zur Algebra und ihre Anwendungen, Akademie-Verlag Berlin, 1979, BAnd 7, pp. 51–60. | MR | Zbl
[4] Kawahara, Y.: Relations in categories with pullbacks. Mem. Kyushu University, Series A, Math. 27 (1973), 149–173. | DOI | MR | Zbl
[5] Leech, J.: Constructing inverse monoids from small categories. Semigroup Forum 36 (1987), 89–116. | DOI | MR | Zbl
[6] Mitchell, B.: Theory of categories. Acad. Press New York, 1965. | MR | Zbl
[7] Schwab, E.: Image and inverse image mappings in exact inverse categories. Boll. U.M.I. 18–B (1981), 831–845. | MR | Zbl
[8] Schwab, E., Schwab, E.D.: Quantum logic, dagger kernel categories and inverse Baer*-categories. Order 296 (2012), 405–417. | DOI | MR
[9] Schwab, E.D., Stoianov, G.: A Dirichlet analogue of the free monogenic inverse semigroup via Möbius inversion. Rocky Mountain J. Math 41 (2011), 1701–1710. | DOI | MR | Zbl
Cité par Sources :