On inverse categories with split idempotents
Archivum mathematicum, Tome 51 (2015) no. 1, pp. 13-25 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present some special properties of inverse categories with split idempotents. First, we examine a Clifford-Leech type theorem relative to such inverse categories. The connection with right cancellative categories with pushouts is illustrated by simple examples. Finally, some basic properties of inverse categories with split idempotents and kernels are studied in terms of split idempotents which generate (right or left) principal ideals of annihilators.
We present some special properties of inverse categories with split idempotents. First, we examine a Clifford-Leech type theorem relative to such inverse categories. The connection with right cancellative categories with pushouts is illustrated by simple examples. Finally, some basic properties of inverse categories with split idempotents and kernels are studied in terms of split idempotents which generate (right or left) principal ideals of annihilators.
DOI : 10.5817/AM2015-1-13
Classification : 18B40, 20M50
Keywords: inverse categories; inverse monoids; split idempotents; pointed sets; annihilators; exact sequences
@article{10_5817_AM2015_1_13,
     author = {Schwab, Emil and Schwab, Emil Daniel},
     title = {On inverse categories with split idempotents},
     journal = {Archivum mathematicum},
     pages = {13--25},
     year = {2015},
     volume = {51},
     number = {1},
     doi = {10.5817/AM2015-1-13},
     mrnumber = {3338763},
     zbl = {06487018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-13/}
}
TY  - JOUR
AU  - Schwab, Emil
AU  - Schwab, Emil Daniel
TI  - On inverse categories with split idempotents
JO  - Archivum mathematicum
PY  - 2015
SP  - 13
EP  - 25
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-13/
DO  - 10.5817/AM2015-1-13
LA  - en
ID  - 10_5817_AM2015_1_13
ER  - 
%0 Journal Article
%A Schwab, Emil
%A Schwab, Emil Daniel
%T On inverse categories with split idempotents
%J Archivum mathematicum
%D 2015
%P 13-25
%V 51
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-13/
%R 10.5817/AM2015-1-13
%G en
%F 10_5817_AM2015_1_13
Schwab, Emil; Schwab, Emil Daniel. On inverse categories with split idempotents. Archivum mathematicum, Tome 51 (2015) no. 1, pp. 13-25. doi: 10.5817/AM2015-1-13

[1] Clifford, A.H.: A class of d-simple semigroups. Amer. J. Math. 75 (1953), 547–556. | DOI | MR | Zbl

[2] Jones, D.G., Lawson, M.V.: Graph inverse semigroups: their characterization and completion. J. Algebra 409 (2014), 444–473. | DOI | MR

[3] Kastl, J.: Inverse categories. Studien zur Algebra und ihre Anwendungen, Akademie-Verlag Berlin, 1979, BAnd 7, pp. 51–60. | MR | Zbl

[4] Kawahara, Y.: Relations in categories with pullbacks. Mem. Kyushu University, Series A, Math. 27 (1973), 149–173. | DOI | MR | Zbl

[5] Leech, J.: Constructing inverse monoids from small categories. Semigroup Forum 36 (1987), 89–116. | DOI | MR | Zbl

[6] Mitchell, B.: Theory of categories. Acad. Press New York, 1965. | MR | Zbl

[7] Schwab, E.: Image and inverse image mappings in exact inverse categories. Boll. U.M.I. 18–B (1981), 831–845. | MR | Zbl

[8] Schwab, E., Schwab, E.D.: Quantum logic, dagger kernel categories and inverse Baer*-categories. Order 296 (2012), 405–417. | DOI | MR

[9] Schwab, E.D., Stoianov, G.: A Dirichlet analogue of the free monogenic inverse semigroup via Möbius inversion. Rocky Mountain J. Math 41 (2011), 1701–1710. | DOI | MR | Zbl

Cité par Sources :