Keywords: frame; ring of real-valued continuous functions; weakly spatial frame; fixed and strongly fixed ideal
@article{10_5817_AM2015_1_1,
author = {Estaji, A. A. and Karimi Feizabadi, A. and Abedi, M.},
title = {Strongly fixed ideals in $ C (L)$ and compact frames},
journal = {Archivum mathematicum},
pages = {1--12},
year = {2015},
volume = {51},
number = {1},
doi = {10.5817/AM2015-1-1},
mrnumber = {3338762},
zbl = {06487017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-1/}
}
TY - JOUR AU - Estaji, A. A. AU - Karimi Feizabadi, A. AU - Abedi, M. TI - Strongly fixed ideals in $ C (L)$ and compact frames JO - Archivum mathematicum PY - 2015 SP - 1 EP - 12 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2015-1-1/ DO - 10.5817/AM2015-1-1 LA - en ID - 10_5817_AM2015_1_1 ER -
Estaji, A. A.; Karimi Feizabadi, A.; Abedi, M. Strongly fixed ideals in $ C (L)$ and compact frames. Archivum mathematicum, Tome 51 (2015) no. 1, pp. 1-12. doi: 10.5817/AM2015-1-1
[1] Banaschewski, B.: Prime elements from prime ideals. Order 2 (2) (1985), 211–213. | DOI | MR | Zbl
[2] Banaschewski, B.: Pointfree topology and the spectra of f-rings. Ordered algebraic structures, (Curacoa, 1995), Kluwer Acad. Publ., Dordrecht, 1997, pp. 123–148. | MR | Zbl
[3] Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathemática (Série B), Vol. 12, University of Coimbra, Departmento de Mathemática, Coimbra, 1997. | MR | Zbl
[4] Banaschewski, B., Gilmour, C.R.A.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolin. 37 (1996), 577–587. | MR | Zbl
[5] Dube, T.: Some ring-theoretic properties of almost $P$-frames. Algebra Universalis 60 (2009), 145–162. | DOI | MR | Zbl
[6] Dube, T.: On the ideal of functions with compact support in pointfree function rings. Acta Math. Hungar. 129 (2010), 205–226. | DOI | MR | Zbl
[7] Dube, T.: A broader view of the almost Lindelf property. Algebra Universalis 65 (2011), 263–276. | DOI | MR
[8] Dube, T.: Real ideal in pointfree rings of continuous functions. Bull. Asut. Math. Soc. 83 (2011), 338–352. | MR
[9] Dube, T.: Extending and contracting maximal ideals in the function rings of pointfree topology. Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (4) (2012), 365–374. | MR | Zbl
[10] Ebrahimi, M.M., Karimi, A.: Pointfree prime representation of real Riesz maps. Algebra Universalis 2005 (54), 291–299. | MR
[11] Estaji, A.A., Feizabadi, A. Karimi, Abedi, M.: Zero sets in pointfree topology and strongly $z$-ideals. accepted in Bulletin of the Iranian Mathematical Society.
[12] Garcáa, J. Gutiérrez, Picado, J.: How to deal with the ring of (continuous) real-valued functions in terms of scales. Proceedings of the Workshop in Applied Topology WiAT'10, 2010, pp. 19–30.
[13] Gillman, L., Jerison, M.: Rings of continuous functions. Springer Verlag, 1979. | MR
[14] Johnstone, P.T.: Stone Spaces. Cambridge Univ. Press, 1982. | MR | Zbl
[15] Paseka, J.: Conjunctivity in quantales. Arch. Math. (Brno) 24 (4) (1988), 173–179. | MR | Zbl
[16] Paseka, J., Šmarda, B.: $T_2$-frames and almost compact frames. Czechoslovak Math. J. 42 (3) (1992), 385–402. | MR
[17] Picado, J., Pultr, A.: Frames and Locales: topology without points. Frontiers in Mathematics, Springer, Basel, 2012. | MR | Zbl
[18] Simmons, H.: The lattice theoretical part of topological separation properties. Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48. | MR
Cité par Sources :